36 research outputs found

    One-pot, multicomponent synthesis of 4<i style="">H</i>-pyrano[2,3-<i style="">c</i>]pyrazoles in water at 25°C

    No full text
    537-541Several pyranopyrazoles are synthesized by an iodine catalyzed four component reaction at 25°C in water. The yields are excellent, procedure is simple, efficient and environmentally benign

    Effect of lateral substituent and chain length on mesomorphic properties of novel alkoxy benzyloxy benzoates of cyanophenyl rod-shaped compounds

    No full text
    Three novel homologous series of rod-shaped cyanophenyl alkoxy benzoate liquid crystalline compounds with lateral polar fluorine and chlorine substituent were prepared, and chemical structures of novel materials have been characterized by standard spectral technique and elemental analysis. The mesophase characterization was carried out using the combination of polarized optical microscopy and differential scanning calorimetry. All the compounds exhibit wide thermal range of enantiotropic SmA phase

    Zn(OAc) 2

    No full text

    &ITSyn &ITvs &ITAnti &ITCarboxylic Acids in Hybrid Peptides: Experimental and Theoretical Charge Density and Chemical Bonding Analysis

    Get PDF
    A comparative study of syn vs anti carboxylic acids in hybrid peptides based on experimental electron density studies and theoretical calculations shows that, in the anti form, all three bond angles surrounding of the -COOH group are close to similar to 120 degrees, as expected for a C-sp(2) atom, C-carboxyl whereas in the syn form, the angle C-alpha-C(O)-O-hydroxyl angle is significantly smaller by 5-10 degrees. The oxygen atom in the carboxyl group is more electronegative in the anti form, so the polarity of the acidic O-H bond is higher in the anti form compared to the syn form, as observed within the limitations of H atom treatment in X-ray diffraction. Consequently, the investigated anti carboxylic acid forms the strongest O-H center dot center dot center dot O hydrogen bond among all model compounds. Furthermore, according to natural bond orbital analysis, the oxygen lone pairs are clearly nonequivalent, as opposed to the general notion of hybridization of equivalent sp(2) and sp(3) lone pairs on carbonyl or hydroxyl oxygen atoms. The hybridization of the lone pairs is directly related to the directionality and strength of hydrogen bonds

    Temperature-Induced Reversible First-Order Single Crystal to Single Crystal Phase Transition in Boc‑γ<sup>4</sup>(<i>R</i>)Val-Val-OH: Interplay of Enthalpy and Entropy

    No full text
    Crystals of Boc-γ<sup>4</sup>(<i>R</i>)­Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at <i>T</i><sub>c</sub> ≈ 205 K from the orthorhombic space group <i>P</i>22<sub>1</sub>2<sub>1</sub> (<i>Z</i>′ = 1) to the monoclinic space group <i>P</i>2<sub>1</sub> (<i>Z</i>′ = 2) with a hysteresis of ∼2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with ∼50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the <i>ac</i> plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored

    Temperature-Induced Reversible First-Order Single Crystal to Single Crystal Phase Transition in Boc‑γ<sup>4</sup>(<i>R</i>)Val-Val-OH: Interplay of Enthalpy and Entropy

    No full text
    Crystals of Boc-γ<sup>4</sup>(<i>R</i>)­Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at <i>T</i><sub>c</sub> ≈ 205 K from the orthorhombic space group <i>P</i>22<sub>1</sub>2<sub>1</sub> (<i>Z</i>′ = 1) to the monoclinic space group <i>P</i>2<sub>1</sub> (<i>Z</i>′ = 2) with a hysteresis of ∼2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with ∼50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the <i>ac</i> plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored

    A novel bioassay based gold nanoribbon biosensor to aid the preclinical evaluation of anticancer properties

    No full text
    In this work, we report a microbial biosensor fabricated for the preclinical assay of anticancer compounds. Gold nanoribbons were used as a transducer for mounting the microbe. For the synthesis of these unique Au nanostructures, quercetin stabilized gold nanoparticles (Q-AuNPs) were synthesized as a first step using onion peel. Later, dityrosine peptide was used as a sacrificial template for the synthesis of the gold nanoribbons (AuNRs). The structural morphology of the as-synthesized Au nanomaterial was examined using UV spectroscopy, XRD, SEM and TEM. The AuNRs were found to be &lt;10 nm in diameter, which provided a good biocompatible environment and effective protection for the immobilization of Agrobacterium tumefaciens (At), a causative agent of crown gall disease. At is reported to cause tumors in plants through a tumorigenic mechanism similar to that of humans. Inhibition of At indicates that the inhibitory compound being screened exhibits anticancer activity. Clitoria ternatea (Ct) is traditionally used to cure many diseases and is known to possess anticancer activity. Therefore, we have used a Ct flower extract in the preclinical study of its anticancer activity against At by fabricating a simple electrochemical sensor. We have employed electrochemical techniques such as CV and EIS for the characterization of the developed microbial biosensor. Moreover, the as-synthesized AuNRs behave as an ideal transducer and platform, thus improving the electrode surface area and providing good biocompatibility for the immobilization of At. In contrast to other immobilization techniques and biosensors that often require elaborate procedures, cross-linking agents and rigorous chemical reactions, At was directly adsorbed onto the electrode under optimum conditions without any mediators. The results show that the developed biosensor is useful in the pre-clinical analysis of anticancer properties. Indeed the study examines the use of electrochemistry, demonstrating the rapid response and high sensitivity of the proposed sensor in contrast to bioassay procedures. In conclusion, the experimental results indicate that the developed biosensor accentuates the excellent properties of the synthesized AuNRs, which promises to be a novel avenue in designing biosensors. © 2016 The Royal Society of Chemistry.1
    corecore