14 research outputs found

    Development and validation of new analytical method for the estimation of fluoxetine in bulk and dosage form by UV spectrophotometry

    Get PDF
    A simple, rapid and precise method is developed for the quantitative determination of Fluoxetine in combined pharmaceutical-dosage forms. The method was based on UV Spectrophotometric determination of Fluoxetine drug using Beer-Lamberts Law. It involves absorbance measurement at 224 nm (λmax of Fluoxetine) in water. For UV Spectrophotometric method, linearity was obtained in concentration range of 5-30 mcg/ml with regression 0.999 for Fluoxetine respectively. Recovery was in the range of 98 -102%; the value of standard deviation and %R.S.D was found to be < 2 shows high precision of the method.

    Evolution of eastern segment of the Central India Tectonic Zone: an insight from a magnetotelluric study

    No full text
    The collision process between the South Indian Block (SIB) and North Indian Block (NIB) resulted in the development of the complex crustal nature of the Central India Tectonic Zone (CITZ). The evolutionary past of CITZ covers a long geological time (similar to 1000 Ma), which corresponds to the assembly and spreading of Columbia and Rodinia supercontinents. Despite several studies in the western and central parts of the CITZ, the location of the suture zone between the SIB and NIB is still under debate. In addition to that, the crustal structure in the eastern segment of CITZ is yet to be resolved. Therefore, for the first time, a dense station coverage magnetotelluric (MT) study is carried out along a 275 km transect in the eastern segment of CITZ from Pandaria to Rewa. The complexity of the Central Indian Shear (CIS) and Tan Shear Zone (TSZ) are reflected as anomalous phases (beyond 90 degrees) in the MT data. A deep crustal resistivity model derived from 2-D and 3-D inversion of the MT data brought out a high-to-moderate conductivity structure (10-100 omega-m) in the middle of the surface expressions of CIS and TSZ. The conductive structure could be related to a deformation zone formed by tectonic interaction of the CIS and TSZ or multiple tectonic boundaries in the middle of the CIS and TSZ. The conductive structure observed in the southern limit of the CITZ also may indicate the tectonic boundary between the SIB and NIB. The high conductivity in the deformation zone may be explained by the collision-related metallic rich sediments and/or mylonite associated with interconnected fluids. Moderately conductive vertical features delineated from the MT model correlate with the intrabasinal faults which might have acted as the pathways for Deccan volcanism. This study suggests that the CITZ could have been developed under the transition of oceanic subduction to continental collision processes at multiple geological times

    Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications

    No full text
    Currently, metallic nanoparticles possessing versatile heterogeneous catalytic functionality such as in hydrogenation, water splitting, hydrogen production and CO2 reduction for global pollution remediation have been paid great attentions due to their high chemical stability, superior activity and unique electrical and optical properties. However, the gradual degradation of their catalytic activity on multiple usage limits the monometallic nanoparticles to industrial applications. Herein, we fabricated the highly porous fenugreek polysaccharide assisted green synthesis of Au-Pd nanostructures for heterogeneous catalytic hydrogenation of the industrial usable highly toxic 4-nitrophenol to the medicinally useful 4-aminophenol. The aqueous method developed in the present work is environmentally friendly, simple and low-cost procedure. The fabricated bimetallic porous Au Pd nano structures characterized using SEM, TEM, UV-Vis, XRD, XPS and FTIR analysis. The catalytic activity of the synthesized nanostructures was studied for the heterogeneous hydrogenation of 4-nitrophenol to 4-aminophenol in presence of NaBH4, and the catalytic kinetic for the hydrogenation was analyzed via an UV-Vis spectrometer. (C) 2018 Elsevier B.V. All rights reserved.11Nsciescopu

    Role of fluid on seismicity of an intra-plate earthquake zone in Western India: an electrical fingerprint from magnetotelluric study

    No full text
    Abstract The magnetotelluric (MT) investigation carried out in Koyna Seismogenic Zone (KSZ), an intra-plate earthquake region in Western India, along an E–W profile brings out moderately conductive (~ 700–1000 ℩m) near vertical features within the very high resistive (> 20,000 ℩m) granite/granite-gneiss basement. Occurrences of these anomalous moderate conductors are corroborated with sensitivity analysis. The alignment of earthquake hypocenters along the resistive–conductive boundary signifies the moderate conductor as basement fault. The conversion of resistivity values to the ratio of seismic P- to S-wave velocity (v p/v s) suggests that the moderate conductivity of the fault zone (as compared to the surrounding basement) appears due to the presence of fluid in the fault zone. Geophysical evidences reveal ~ 2.5–3.6 vol% fluid in the fault zone with ~ 1.8–2.6% interconnected porosity, which migrates along the structural boundary and invades the mechanically strong basement to nucleate the brittle failure within it. The present study proposes two mechanisms for the seismicity in the Koyna region. First: the meteoric water circulation due to the loading–unloading of nearby Koyna reservoir acts as potential fluid source for this triggered seismicity, which has also been suggested by previous studies. Second: the fluid circulation due to a deep-seated source. The present MT study brings out a conductive feature below 20 km depth which is thought to be emerged due to the dehydration of amphibole bearing rocks. The fluid generated from dehydration might act as a probable source to the triggered seismicity; since the conductive feature has a linkage to the upper crust. Graphical Abstrac

    Magnolol induces cell death through PI3K/Akt-mediated epigenetic modifications boosting treatment of BRAF- and NRAS-mutant melanoma

    No full text
    Most BRAF-mutant melanoma patients experience a fulminate relapse after several months of treatment with BRAF/MEK inhibitors. To improve therapeutic efficacy, natural plant-derived compounds might be considered as potent additives. Here, we show that magnolol, a constituent of Magnolia officinalis, induced G1 arrest, apoptosis and cell death in BRAF- and NRAS-mutant melanoma cells at low concentration, with no effect in BRAF- and NRAS wild-type melanoma cells and human keratinocytes. This was confirmed in a 3D spheroid model. The apoptosis-inducing effect of magnolol was completely rescued by activating Akt suggesting a mechanism relying primarily on Akt signaling. Magnolol significantly downregulated the PI3K/Akt pathway which led to a global decrease of the active histone mark H3K4me3. Alongside, the repressive histone mark H3K9me3 was increased as a response to DNA damage. Magnolol-induced alterations of histone modifications are reversible upon activation of the Akt pathway. Magnolol-induced a synergistic effect in combination with either BRAF/MEK inhibitors dabrafenib/trametinib or docetaxel at a lower concentration than usually applied in melanoma patients. Combination of magnolol with targeted therapy or chemotherapy also led to analogous effects on histone marks, which was rescued by Akt pathway activation. Our study revealed a novel epigenetic mechanism of magnolol-induced cell death in melanoma. Magnolol might therefore be a clinically useful addition to BRAF/MEK inhibitors with enhanced efficacy delaying or preventing disease recurrence

    Facile Synthesis of Triphenylamine Based Hyperbranched Polymer for Organic Field Effect Transistors

    No full text
    In this study, we reported the synthesis and characterization of a novel hyperbranched polymer (HBPs) tris[(4-phenyl)amino-alt-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene] (PTPABDT) composed of benzo[1,2-b:4,5-b’]dithiophene (BDT) and triphenyleamine (TPA) constituent subunits by A3 + B2 type Stille’s reaction. An estimated optical band gap of 1.69 eV with HOMO and LUMO levels of −5.29 eV and −3.60 eV, respectively, as well as a high thermal stability up to 398 °C were characterized for the synthesized polymer. PTPABDT fabricated as an encapsulated top gate/bottom contact (TGBC), organic field effect transistors (OFET) exhibited a p-type behavior with maximum field-effect mobility (”max) and an on/off ratio of 1.22 × 10−3 cm2 V−1 s−1 and 7.47 × 102, respectively

    Integrated subsurface investigation for magmatic sulfide mineralization in Betul Fold Belt, central India

    No full text
    Magnetotelluric (MT), Electrical Resistivity Tomography (ERT), Time-Domain Induced Polarization (TDIP), Geochemical and Geological studies followed by drilling and down-hole logging were undertaken with in the Betul Fold Belt (BFB) in Central India, to demarcate zones of magmatic Ni-Cu-PGE sulfide mineralization. The BFB is predominantly composed of circular to elongate gabbro bodies of the Padhar Mafic-Ultramafic Complex, intruded into a sequence of bimodal volcanic rocks and quartzites. Near-surface samples of ultramafic rocks were subjected to precise geochemical analysis and scanned by an electron microscopy with an energy dispersive spectrometer (SEM-EDS). This work indicated the presence of pyrite, pyrrhotite, chalcopyrite, pentlandite, and minor amounts of W-Cd bearing boweiite and palladenite assemblage. These minerals are regarded as favorable to the occurrence of Ni-Cu-PGE sulfide mineralization. MT data derived from two profiles were analyzed and modeled using 2D and 3D inversion algorithms. The robust conductivity anomalies obtained from the MT model have been interpreted coupled with electrical tomography, geology, and geochemistry data. The near-surface shallow depth conductors observed in the ERT sections are interpreted as the sulfide mineralized zones. They corroborate the MT results. These conductive zones reflect the occurrence of the magmatic Ni-Cu-PGE bearing sulfide mineralization associated with rocks of the mantle-derived Padhar Mafic Ultramafic Complex. This geophysical data, in conjunction with petrological and geochemical analysis of drill core samples have allowed the identification of the origin and paragenesis of sulphide mineralization in the study area. Geochemical studies suggest that the parental magma was generated from a subduction modified, metasomatized and an enriched mantle source that was subsequently emplaced in a magmatic continental arc setting. The interpreted conductors, observed at shallow depths (similar to 200-300 m), have been generated by secondary hydrothermal fluid circulation leading to vein formation in the host Padhar Mafic-Ultramafic Complex. The MT and electrical tomography models delineate the geological boundaries of the sulfide-bearing mineralized deposits in the BFB
    corecore