8 research outputs found

    Antimicrobial Effect of Mouthwashes in Patients Undergoing Orthodontic Treatment

    Get PDF
    Objective: The purpose of the study was to determine the efficacy of three different mouthwashes in patients undergoing fixed orthodontic treatment for prevention of white spot lesions Methods: The study was conducted on 30 patients undergoing fixed orthodontic treatment between the ages of 15-25years. Patients were divided into 3groups - Group 1 control group, Group 2 using freshclor for 30 sec twice daily and group 3 using HiOra mouth wash for 30sec twice daily. Samples from tooth surfaces were collected at 1st day, 30th day and 90th day interval and were incubated for 48 hours. Colonies were counted using digital colony counter. Results: Freshclor and HiOra mouthwashes showed the maximum potential for the control of pathogenic organisms, and prevention of gingivitis and bacterial plaque inhibition than patients those were not using mouthwash

    Isolation and evolutionary analysis of Australasian topotype of bluetongue virus serotype 4 from India

    Get PDF
    Bluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population

    Full-genome sequencing as a basis for molecular epidemiology studies of bluetongue virus in India

    Get PDF
    Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV ‘topotype’. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of ‘live’ South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies

    Dual infection with bluetongue virus serotypes and first time detection of serotype 5 in India

    No full text
    Bluetongue is endemic in India and has been reported from most Indian states. Of late, the clinical disease is most frequently seen in the states of Andhra Pradesh, Telangana (erstwhile Andhra Pradesh state), Tamil Nadu and Karnataka. Our analysis of diagnostic samples from bluetongue outbreaks during 2010–2011 from the state of Karnataka identified bluetongue virus (BTV) serotype 5 (BTV-5) for the first time in India. One of the diagnostic samples (CH1) and subsequent virus isolate (IND2010/02) contained both BTV-2 and BTV-5. Segment 2 (seg-2) sequence data (400 bp: nucleotides 2538–2921) for IND2010/02-BTV5, showed 94.3% nucleotide identity to BTV-5 from South Africa (Accession no. AJ585126), confirming the virus serotype and also indicating that Seg-2 was derived from a Western topotype, which is in contrast to serotype 2, that belongs to an Eastern topotype. BTV-5 has been recently reported from Africa, China, French islands and the Americas. Although the exact source of the Indian BTV-5 isolate is still to be confirmed, recent identification of additional exotic serotypes in India is of real concern and might add to the severity of the disease seen in these outbreaks

    Genome Sequence of Bluetongue Virus Type 2 from India: Evidence for Reassortment between Outer Capsid Protein Genes

    No full text
    Southern Indian isolate IND1994/01 of bluetongue virus serotype 2 (BTV-2), from the Orbivirus Reference Collection at the Pirbright Institute (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1994/01), was sequenced. Its genome segment 6 (Seg-6) [encoding VP5(OCP2)] is identical to that of the Indian BTV-1 isolate (IND2003/05), while Seg-5 and Seg-9 are closely related to isolates from South Africa and the United States, respectively

    Genome sequence of bluetongue virus type 2 from India: evidence for reassortment between outer capsid protein genes

    Get PDF
    Southern Indian isolate IND1994/01 of bluetongue virus serotype 2 (BTV-2), from the Orbivirus Reference Collection at the Pirbright Institute (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1994/01), was sequenced. Its genome segment 6 (Seg-6) [encoding VP5(OCP2)] is identical to that of the Indian BTV-1 isolate (IND2003/05), while Seg-5 and Seg-9 are closely related to isolates from South Africa and the United States, respectively

    Phylogenetic analysis based on Seg-6/VP5 gene of Indian isolate of BTV with other global isolates.

    No full text
    <p>Phylogenetic relationship of full length Seg-6 nucleotide sequences (n = 84) was inferred in MEGA 5 using neighbour-joining method and tested by bootstrapping 1000 replicates. Seg-6 nucleotypes were assigned as per Maan et al [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131257#pone.0131257.ref028" target="_blank">28</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131257#pone.0131257.ref030" target="_blank">30</a>] and depicted by different branch colour. Indian isolates are depicted with blue dots.</p

    Phylogenetic analysis based on Seg-2/VP2 gene of Indian isolate of BTV with other global isolates.

    No full text
    <p>Phylogenetic relationship of full length Seg-2 nucleotide sequences (n = 80) was inferred in MEGA 5 using neighbour-joining method and tested by bootstrapping 1000 replicates. Seg-2 nucleotypes were assigned as per Maan et al [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131257#pone.0131257.ref028" target="_blank">28</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131257#pone.0131257.ref030" target="_blank">30</a>] and depicted by different branch colour. Indian isolates are depicted with blue dots. The node labels in each figure refer to bootstrap confidence values.</p
    corecore