188 research outputs found

    Phase-field modelling of fracture in single crystal plasticity

    Get PDF
    We propose a phase-field model for ductile fracture in a single crystal within the kinematically linear regime, by combining the theory of single crystal plasticity as formulated in Gurtin et al. (2010) and the phase-field formulation for ductile fracture proposed by Ambati et al. (2015) . The model introduces coupling between plasticity and fracture through the dependency of the so-called degradation function from a scalar global measure of the accumulated plastic strain on all slip systems. A viscous regularization is introduced both in the treatment of plasticity and in the phase-field evolution equation. Testing of the model on two examples for face centred cubic single crystals indicates that fracture is predicted to initiate and develop in the regions of the maximum accumulated plastic strain, which is in agreement with phenomenological observations. A rotation of the crystallographic unit cell is shown to affect the test results in terms of failure pattern and corresponding global and local response

    Computational and theoretical aspects of a grain-boundary model at finite deformations

    Get PDF
    A model to describe the role of grain boundaries in the overall response of a polycrystalline material at small length scales subject to finite deformations is presented. Three alternative thermodynamically consistent plastic flow relations on the grain boundary are derived and compared using a series of numerical experiments. The numerical model is obtained by approximating the governing relations using the finite element method. In addition, the infinitesimal and finite deformation theories are compared, and the limitations of the former made clear

    Dissipation-consistent modelling and classification of extended plasticity formulations

    Get PDF
    A unified classification framework for models of extended plasticity is presented. The models include well known micromorphic and strain-gradient plasticity formulations. A unified treatment is possible due to the representation of strain-gradient plasticity within an Eringen-type micromorphic framework. The classification is based on the form of the energetic and dissipative model structures and exploits the framework of dissipation-consistent modelling to elucidate the flow relation and yield condition. Models are identified as either serial or parallel. This designation is also applicable to familiar models of classical plasticity. Particular attention is paid to the rate-dependent problem arising from the choice of a smooth dissipation potential. The inability to locally determine the region of admissible stresses for the non-smooth (rate-independent) parallel models of plasticity is made clear

    A thermodynamically consistent formulation of generalized thermoelasticity at finite deformations

    Get PDF
    A thermodynamically consistent model of non-classical coupled non-linear thermoelasticity capable of accounting for thermal wave propagation is proposed. The heat flux is assumed to consist of both additive energetic and dissipative components. Constitutive relations for the stress, the entropy and the energetic component of the heat flux are derived in a thermodynamically consistent manner. A Lyapunov function for the dynamics is obtained for the case in which the surface of the continuum body is maintained at a reference temperature. It is shown that the system is non-linearly stable. The linearized model is shown to be similar to the type III model of Green and Naghdi, except for some minor differences in the interpretations of some of the parameters

    A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology

    Get PDF
    A curvilinear-coordinate-based finite element methodology is presented as a basis for a straightforward computational implementation of the theory of surface elasticity that mimics the underlying mathematical and geometrical concepts. An efficient formulation is obtained by adopting the same methodology for both the bulk and the surface. The key steps to evaluate the hyperelastic constitutive relations at the level of the quadrature point in a finite element scheme using this unified approach are provided. The methodology is illustrated through selected numerical examples

    Space–time Galerkin methods for simulation of laser heating using the generalized nonlinear model

    Get PDF
    The generalized thermal model is a thermodynamically consistent extension of the classical Fourier’s law for describing thermal energy transportation which is very relevant to applications involving very small length, time scales and/or at extremely low temperatures. Under such conditions, thermal propagation has been observed to manifest as waves, a phenomenon widely referred to as second sound effect. However, this is in contrast to the paradoxical prediction of the Fourier’s model that thermal disturbances propagate with infinite speed. In this work, we review the nonlinear model based on the theory of Green and Naghdi for thermal conduction in rigid bodies and present its implementation within a class of space–time methods. The unconditional stability of the time-discontinuous Galerkin method without restriction over the grid structure of the space–time domain is proved. We also perform a number of numerical experiments to study the convergence properties and analyze the thermal response of materials under short-pulsed laser heating in two space dimensions

    Computational and theoretical aspects of a grain-boundary model at finite deformations

    Get PDF
    A model to describe the role of grain boundaries in the overall response of a polycrystalline material at small length scales subject to finite deformations is presented. Three alternative thermodynamically consistent plastic flow relations on the grain boundary are derived and compared using a series of numerical experiments. The numerical model is obtained by approximating the governing relations using the finite element method. In addition, the infinitesimal and finite deformation theories are compared, and the limitations of the former made clear

    A validated patient-specific FSI model for vascular access in haemodialysis

    Get PDF
    The flow rate inside arteriovenous fistulas is many times higher than physiological flow and is accompanied by high wall shear stress resulting in low patency rates. A fluid–structure interaction finite element model is developed to analyse the blood flow and vessel mechanics to elucidate the mechanisms that can lead to failure. The simulations are validated against flow measurements obtained from magnetic resonance imaging data

    Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    Full text link
    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in a neutron star.Comment: 7 pages, 5 figures (Latex

    Warm stellar matter with deconfinement: application to compact stars

    Full text link
    We investigate the properties of mixed stars formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. We use the non- linear Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. In particular, we study the dependence of the onset of a mixed phase and a pure quark phase on the hyperon couplings, quark model and properties of the hadronic model. We calculate the strangeness fraction with baryonic density for the different EOS. With the NJL model the strangeness content in the mixed phase decreases. The calculations were performed for T=0 and for finite temperatures in order to describe neutron and proto-neutron stars. The star properties are discussed. Both the Bag model and the NJL model predict a mixed phase in the interior of the star. Maximum allowed masses for proto-neutron stars are larger for the NJL model (∼1.9\sim 1.9 M⨀_{\bigodot}) than for the Bag model (∼1.6\sim 1.6 M⨀_{\bigodot}).Comment: RevTeX,14 figures, accepted to publication in Physical Review
    • …
    corecore