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A. Javilia,∗, A. McBrideb, P. Steinmanna, B.D. Reddyb
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Abstract

A curvilinear-coordinate-based finite element methodology is presented as a basis for a straightforward computational

implementation of the theory of surface elasticity that mimics the underlying mathematical and geometrical concepts.

An efficient formulation is obtained by adopting the same methodology for both the bulk and the surface. The key

steps to evaluate the hyperelastic constitutive relations at the level of the quadrature point in a finite element scheme

using this unified approach are provided. The methodology is illustrated through selected numerical examples.

Keywords: Surface elasticity, Curvilinear coordinates, Finite element

1. Introduction

The surface elasticity theory of Gurtin and Murdoch (1975) and variants thereof have been applied to study the

mechanical response of micro- and nanoscale solids. Integral to the theory is the derivation of a set of governing

equations and constitutive relations that describe the behaviour of the surface of the bulk object. Earlier related

contributions include those by Scriven (1960) on the dynamics of fluid interfaces. Scriven employed many of the

fundamental concepts formalised by Gurtin and Murdoch (1975), including the use of the term surface elasticity

(Scriven and Sternling, 1960). The study of the behaviour of fluid surfaces dates back to the work, primarily on the

capillary effect, of Laplace, Young and Gibbs. For extensive reviews of surface elasticity see Duan et al. (2009); Javili

et al. (2013).

The role of surface (interface) elasticity and the size-dependence of the elastic response has received considerable

attention recently (see e.g. Sharma et al., 2003; Sharma and Ganti, 2004; Sharma and Wheeler, 2007; Duan et al., 2005;

Duan and Karihaloo, 2007; Benveniste and Miloh, 2001; Huang and Sun, 2007; Yvonnet et al., 2008; Fischer and

Svoboda, 2010; Weissmüller et al., 2010; Levitas, 2013). This resurgence of interest in the mechanics of solid surfaces
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can be largely attributed to the increasing number of applications involving nanoscale structures. In such applications

the surface-to-volume ratio becomes significant (see e.g. the seminal works of Shuttleworth, 1950; Herring, 1951;

Orowan, 1970). Relevant works include those by Cammarata (1994) who detailed the role of the surface and interface

stress in the thermodynamics of solids and provided some experimental measurements at the nanoscale to underpin the

theory. Miller and Shenoy (2000) compared the surface elasticity model with direct atomistic simulations of nanoscale

structures using the embedded atom method. They showed very good agreement between the atomistic simulations

and the continuum model. Dingreville et al. (2005) proposed a framework to incorporate the surface free energy into

the theory of continuum mechanics. They demonstrated that surface effects become significant when at least one

of the dimensions of the problem is in the nanometer range. The influence of the surface on the elastic behaviour

of nanowires in static bending was investigated by He and Lilley (2008) using the Young–Laplace equation. Hung

and Wang (2006); Wang et al. (2010b) proposed a theory of hyperelasticity accounting for surface energy effects and

showed how surface tension induces a residual stress field in the bulk of nanostructures. Park et al. (2006); Park

and Klein (2007, 2008) developed an alternative continuum framework, based on the surface Cauchy–Born model, to

include surface stresses. Wei et al. (2006) studied the size-dependent mechanical properties of nanostructures with

the finite element method in two dimensions. Size effects observed in ZnO nanowires have been studied using surface

elasticity theory (Agrawal et al., 2008; Yvonnet et al., 2011).

Contributions by some of the authors of this work include the development of a finite-element framework for

continua with elastic boundary surfaces (Javili and Steinmann, 2009, 2010a). The framework is based on finite-strain

theory and inherently accounts for geometrical nonlinearities and surface anisotropy. These contributions do not,

however, exploit fully the powerful curvilinear-coordinate framework, nor do they provide details of the algorithm to

compute the constitutive response at the level of the quadrature point. The theory of thermoelasticity at the nanoscale

is elaborated upon in Javili and Steinmann (2010b, 2011). Javili et al. (2012) study the admissible range for the

surface material parameters. In particular, the validity of negative surface parameters, which have been reported in the

literature, is assessed.

It is clear from the significant body of work on surface elasticity that a robust computational framework is re-

quired to solve the more challenging problems involving, for example, finite deformations and surface tension. Such

a computational framework is the primary objective of this work. A novel curvilinear-coordinate-based finite element

methodology is presented. The primary advantages of the methodology are, first, that it allows for a straightforward

computational implementation of the theory of surface elasticity that mimics the underlying mathematical and geo-

metrical concepts, and, second, that it naturally accommodates curved surfaces. Similar approaches have been adopted

in shell theory (see e.g. Wriggers, 2008, and the reference therein). In related works, Altenbach and Eremeyev (2011)
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applied the theory of elasticity with surface stresses to the modelling of shells with nanoscale thickness. Steigmann

(2009) demonstrated how membrane theory can be regarded as a special case of the Cosserat theory of elastic sur-

faces, or, alternatively, derived from three-dimensional elasticity theory via asymptotic or variational methods (see

also, Benveniste and Berdichevsky, 2010; Gu and He, 2011). Saksono and Perić (2005); Dettmer and Perić (2006)

carried out the finite element implementations accounting for surface tension in fluids (see also Sussmann et al., 2011,

in the context of heat conduction).

An efficient formulation is obtained here by adopting the same methodology for both the bulk and the surface. The

use of such a formulation in the absence of surface effects hold no obvious advantage over the conventional approach,

and we have not seen mention of any such approach in the finite element literature. However, for problems in surface

elasticity it is clearly advantageous. The key steps to evaluate the hyperelastic constitutive relations at the level of

the quadrature point in a finite element scheme using this unified approach are provided. In particular, we detail the

computation of the inverse of the rank-deficient surface deformation gradient. The complete, documented code used

to generate the numerical examples presented here is available and described in a companion paper (McBride and

Javili, 2013).1

Section 2 summarizes the key concepts required from differential geometry. The problem of surface elasticity is

defined and constitutive relations discussed. The key steps in the numerical implementation using the finite element

method are given in Section 3. Finally, a series of numerical examples is presented in Section 4.

2. Theory

The objective of this section is to present theoretical aspects of a unified framework to study both bulk and surface

elasticity theories. The required notation and definitions are first introduced. Thereafter, Section 2.2 briefly reviews

results in differential geometry required to describe the kinematics of the bulk and the surface. Although the results for

the bulk are standard, they clarify, in a familiar framework, the results on the surface. Both sets of results are presented

as a foundation for the unified framework proposed in Section 2.3. Further details on differential geometry can be

found in Green and Zerna (1968); Kreyszig (1991); Ciarlet (2005) among many others. The problem of interest

is introduced in Section 2.3 and the kinematics and various underlying assumptions are discussed. The governing

equations are also given. A nonlinear hyperelastic material model for the bulk together with its associated stress and

tangent are given in Section 2.5. The vast majority of the surface elasticity models in the literature are based upon

the infinitesimal theory. Here, the surface is modelled using an isotropic hyperelastic model. It is demonstrated how

linearization of the current model leads to the classical linear one.

1The documented program can be found at www.cerecam.uct.ac.za/code/surface_energy/doc/html/.
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2.1. Notation and definitions

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for

repeated indices being implied. When the repeated indices are lower-case italic letters the summation is over the range

{1, 2, 3}. If they are lower-case Greek letters the summation is over the range {1, 2}. Three-dimensional Euclidean

space is denoted E3. The scalar product of two vectors a and b is denoted a · b = [a]i[b]i where [a]i and [b]i are the

contravariant components of the vector a and covariant components of the vector b, respectively. The scalar product

of two second-order tensors A and B is denoted A : B = [A]i j[B]i j. The composition of two second-order tensors A

and B, denoted A · B, is a second-order tensor with components [A · B]i j = [A] m
i [B]m j. The action of a second-order

tensor A on a vector a is given by [A · a]i = [A] j
i [a] j. The tensor product of two vectors a and b is a second-order

tensor D = a ⊗ b with [D]i j = [a]i[b] j. The two non-standard tensor products of two second-order tensors A and B

are the fourth-order tensors [A⊗ B]i jkl = [A]ik[B] jl and [A⊗ B]i jkl = [A]il[B] jk.

An arbitrary quantity in the bulk is denoted {•} and analogously {̂•} denotes an arbitrary surface quantity. The

surface quantity can be a vector, not necessarily tangent to the surface, or a tensor, not necessarily tangential or

superficial to the surface. In Section 2.2 all quantities and operators are denoted by small letters. In Section 2.3 and

what follows, we distinguish between quantities in the material and spatial configurations using upper- and lower-case

letters, respectively. The (conventional) identity tensor in E3 is denoted as i. The degeneration of the three-dimensional

identity to the two-dimensional space is defined by i2.

2.2. Key concepts in differential geometry

Let E denote the Cartesian (standard-orthonormal) basis in E3, as shown in Fig. 1, with unit basis vectors ei = ei

and ei · e j = δi j. The indices i and j run from 1 to 3 and δi j = δ
j
i denotes the Kronecker delta, i.e. E = {e1, e2, e3} =

{e1, e2, e3}. Let G = {g1, g2, g3} be an arbitrary basis in E3, see Fig. 1. The basis G∗ = {g1, g2, g3} is the dual to G,

and vice versa, if and only if gi · g j = δ
j
i for all i and j. It can be shown that for a given basis G, its dual basis G∗

always exists, is unique and forms a basis in E3 (see e.g. Itskov, 2007).

Figure 1: Illustration of the Cartesian basis E and an arbitrary basis G along with its dual basis.
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Figure 2: Illustration of the Cartesian coordinate system and a general curvilinear coordinate system. An arbitrary infinitesimal vector dr is shown
in both coordinate systems.

Figure 2 illustrates the Cartesian coordinate system and a general curvilinear coordinate system. Let dr denote

an arbitrary infinitesimal vector expressed in terms of the Cartesian coordinates as shown in Fig. 2 (left). The vector

dr can be expressed in terms of curvilinear coordinates ξi as shown in Fig. 2 (right). This straightforward coordinate

transformation is performed by expressing the Cartesian basis in terms of the curvilinear one as follows: ei = α
j
i g j

where α j
i are the nine coefficients required to linearly map the two coordinates. Clearly the mapping of the coordinates

is invertible. One can express the curvilinear basis in terms of the Cartesian one as gi = β
j
i e j with β

j
i the linear

mapping from the curvilinear coordinates to the Cartesian ones which is inverse to α
j
i , i.e. [β j

i ] = [α j
i ]
−1. Let gi j

denote the mapping from the contravariant basis to the covariant one, and gi j the mapping from the covariant basis to

the contravariant one; that is:

gi = gi j g j and gi = gi j g j .

It can be proven that these two mappings are inverse to each other, i.e. [gi j] = [gi j]−1. Furthermore the coefficients

are found from gi j = gi · g j and gi j = gi · g j. The coefficients gi j and gi j are termed the covariant and contravariant

metric coefficients, respectively. The covariant metric is denoted as g and is defined as the determinant of the matrix

of covariant metric coefficients, i.e. g = |[gi j]|. The contravariant metric g−1 is the determinant of the matrix of con-

travariant metric coefficients. The gradient, divergence and determinant operators in a general curvilinear coordinates
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as applied to tensors are defined as follows:

grad{•} =
∂{•}

∂ξi ⊗ gi , div{•} =
∂{•}

∂ξi · gi = grad{•} : i , det{•} =
[{•} · g1] ·

[
[{•} · g2] × [{•} · g3]

]
g1 · [g2 × g3]

.

The main concepts and definitions pertaining to the differential geometry of the bulk are gathered in Summary 1.

Summary 1 The key differential geometry concepts in the bulk.

dr = dr(ξ) = dr(ξ1, ξ2, ξ3)

gi =
∂r
∂ξi , gi =

∂ξi

∂r
with i, j ∈ {1, 2, 3}

grad{•} =
∂{•}

∂ξi ⊗ gi , div{•} =
∂{•}

∂ξi · gi = grad{•} : i

det{•} =
[{•} · g1] ·

[
[{•} · g2] × [{•} · g3]

]
g1 · [g2 × g3]

gi = gi j g j , gi j = gi · g j , gi = gi j g j , gi j = gi · g j , [gi j] = [gi j]−1 , g = |[gi j]|

g : permutation tensor , g = grst gr ⊗ gs ⊗ gt = grst gr ⊗ gs ⊗ gt , grst = grstg =
√

g erst

grst = grstg =


√

g if rst is an even permutation of 123
−
√

g if rst is an odd permutation of 123
0 otherwise

, erst =


1 if rst is an even permutation of 123
−1 if rst is an odd permutation of 123
0 otherwise

grst = gr · [gs × gt] , grst = gr · [gs × gt]

u × v = [u ⊗ v] : g , u · v = [u ⊗ v] : i , i = δi
j gi ⊗ g j = gi ⊗ gi = g1 ⊗ g1 + g2 ⊗ g2 + g3 ⊗ g3

A two-dimensional (smooth) surface S in E3 can be parametrized by two surface coordinates ξ̂1 and ξ̂2. The

corresponding tangent vectors to the surface coordinate lines ξ̂α, i.e. the covariant (natural) surface basis vectors, are

given by ĝα = ∂r/∂̂ξα. The associated contravariant (dual) surface basis vectors are denoted as ĝα in analogy to the

bulk and are related to the covariant surface basis vectors by the co- and contravariant surface metric coefficients (first

fundamental form for the surface) as

ĝα = ĝ αβ ĝβ and ĝα = ĝαβ ĝβ .

In a near-identical fashion to the bulk, it can be shown that the two metrics are inverse to each other, i.e. [̂gαβ] = [̂g αβ]−1

and furthermore the coefficients are ĝαβ = ĝα · ĝβ and ĝ αβ = ĝα · ĝβ. The contra- and covariant base vectors ĝ3 and
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ĝ3, normal to the surface, are defined by ĝ3 = ĝ1 × ĝ2 and ĝ3 = [̂g33]−1 ĝ3 such that ĝ3 · ĝ3 = 1. The unit normal

to the surface n is parallel to ĝ3 and ĝ3 and can be calculated as n = ĝ3/|̂g3| = ĝ3/|̂g3|. The surface identity tensor

is defined as î = i − ĝ3 ⊗ ĝ3 = i − n ⊗ n. The surface gradient, divergence and determinant operators in a general

curvilinear coordinates are defined as

ĝrad{̂•} =
∂{̂•}

∂̂ξα
⊗ ĝα , d̂iv{̂•} =

∂{̂•}

∂̂ξα
· ĝα = ĝrad{̂•} : î , d̂et{̂•} =

[
[{̂•} · ĝ1] × [{̂•} · ĝ2]

]
|̂g1 × ĝ2|

.

The main concepts and definitions for the differential geometry of the surface are gathered in Summary 2.

Remark: Surface curvature. The surface curvature tensor κ̂ is defined as the negative surface gradient of the

normal n, i.e. κ̂ = −ĝrad n. The (invariant) trace of the surface curvature tensor is defined as κ̂ and renders twice the

mean curvature, i.e. κ̂ = κ̂ : î = −d̂ivn and furthermore, d̂iv î = κ̂ n. In the context of the well-known Young–Laplace

equation, κ̂ = −[1/r1 + 1/r2] where r1 and r2 are the principal radii of curvature. The negative sign arises from the

convention that the curvature is negative if the surface curves away from its normal, and that the radii of curvatures

are always positive, see Fig. 3. In this sense both cylinders and spheres have constant negative mean curvatures.

In the framework presented here, we do not calculate radii of curvature and the curvature sign is intrinsically taken

into account. The (invariant) determinant of the curvature tensor κ̂ is denoted η̂ and is known as Gaussian curvature.

Clearly, a cylinder has a (constant) Gaussian curvature of zero and a sphere a constant positive Gaussian curvature. 2

Figure 3: The surface curvature is negative if the surface curves away from the normal (left) and positive vice versa (right). A surface can, of
course, have a positive curvature along one line and negative curvature along another e.g. a saddle, gyroid etc.

Remark: Superficial and tangential quantities. Second-order tensors and vectors on the surface can be classi-

fied as superficial (in their tangent spaces) or tangential. Superficial second-order tensors on the surface possess the

orthogonality property {̂•} · n = 0. If the arbitrary quantity in the preceding relation is a vector, it is termed tangential.

Tangential second-order tensors on the surface are superficial and also possess the property n · {̂•} = 0. 2
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Figure 4: A subsurface of the surface S is denoted as S∂ with the boundary curve ∂S∂. The normal to the boundary curve and tangent to the surface
is denoted n̂.

Remark: Surface divergence theorem. Let û denote a surface vector field not necessarily tangent to the surface.

The surface vector û can be decomposed into its tangential and normal components as

û = û‖ + û⊥ with û‖ = û · î and û⊥ = û · [n⊗ n] .

The surface divergence of û is analogously decomposed as

d̂iv û = d̂iv û‖ + d̂iv û⊥ = d̂iv û‖ − κ̂ û · n .

Let S∂ denote a subsurface of the surface S with the boundary curve ∂S∂ and n̂ denote the normal to the boundary

curve and tangent to the surface as shown in Fig. 4. The surface divergence theorem, in analogy to the classical bulk

divergence theorem, reads

∫
S∂

d̂iv û‖ da =

∫
∂S∂

û‖ · n̂dl ⇒

∫
S∂

d̂iv û da =

∫
∂S∂

û‖ · n̂dl −
∫
S∂

κ̂ û · nda . 2

2.3. Problem definition

Consider a continuum body that takes the material configuration B0 at time t0 and is mapped via the (bulk) non-

linear deformation map ϕ to the spatial configuration Bt at any time t > 0 as shown in Fig. 5. The associated linear

deformation map, i.e. the deformation gradient, is denoted as F and maps material line elements dX ∈ TB0 (tangent to

B0) to spatial line elements dx ∈ TBt via the relation dx = F · dX. The bulk deformation gradient F is rank-sufficient

and invertible. The bulk is understood as the collective placement of material particles X ∈ B0 and respectively

x ∈ Bt.

Let S0 and St denote the surface of the continuum body in the material and spatial configurations, respectively.
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Summary 2 The key differential geometry concepts of the surface.

dr = dr(̂ξ) = dr(̂ξ1, ξ̂2)

ĝα =
∂r
∂̂ξα

, ĝα =
∂̂ξα

∂r
with α, β ∈ {1, 2}

ĝ3 = ĝ1 × ĝ2 , ĝ3 = [̂g33]−1 ĝ3 , n =
√

ĝ33 ĝ3
=

√
ĝ 33 ĝ3

ĝrad{̂•} =
∂{̂•}

∂̂ξα
⊗ ĝα , d̂iv{̂•} =

∂{̂•}

∂̂ξα
· ĝα = ĝrad{̂•} : î

d̂et{̂•} =

∣∣∣[{̂•} · ĝ1] × [{̂•} · ĝ2]
∣∣∣

|̂g1 × ĝ2|

ĝα = ĝαβ ĝβ , ĝαβ = ĝα · ĝβ , ĝα = ĝ αβ ĝβ , ĝ αβ = ĝα · ĝβ , [̂gαβ] = [̂g αβ]−1 , ĝ = |[̂gαβ]|

ĝ : surface permutation tensor , ĝ = ĝρσ ĝρ ⊗ ĝσ ⊗ g3 = ĝ ρσ ĝρ ⊗ ĝσ ⊗ g3 , ĝρσ = ĝ ρσ ĝ =
√

ĝ êρσ

êρσ =


1 if ρσ is 12
−1 if ρσ is 21
0 otherwise

, ĝρσ = |[̂gρ × ĝσ]| =
√

ĝ êρσ , ĝ ρσ = |[̂gρ × ĝσ]| = [
√

ĝ]−1 êρσ

û × v̂ = [̂u ⊗ v̂] : ĝ , û · v̂ = [̂u ⊗ v̂] : î , î = δαβ ĝα ⊗ ĝβ = ĝα ⊗ ĝα = ĝ1 ⊗ ĝ1 + ĝ2 ⊗ ĝ2 = i − n⊗ n

Material particles on the surface are denoted X̂ in the material configuration and are attached to the bulk, i.e. X̂ =

X|∂B0 . Thus S0 = ∂B0. Furthermore, we assume that the surface is material in the sense that it is permanently attached

to the substrate and therefore St = ∂Bt and x̂ = x|∂Bt . This assumption implies that the motion of the surface ϕ̂ is the

restriction of the bulk motion ϕ to the surface, i.e. ϕ̂ = ϕ|∂B0 . The material line elements on the surface in the material

and spatial configurations are denoted by dX̂ ∈ TS0 and dx̂ ∈ TSt, respectively, and are related by d̂x = F̂ · dX̂ where

F̂ denotes the rank-deficient and thus non-invertible surface deformation gradient.

Remark: Identity tensors in the material and spatial configurations. In what follows the identity tensor is

denoted as I or i and is understood as the conventional identity tensor in E3, i.e. its matrix representation would be

a 3 × 3 matrix with 1 in the main diagonal entries and 0 elsewhere. Although these identity tensors are invariant

and i = I, we use different letters to indicate explicitly which configuration they belong to. The reason for this can

be better understood when considering the surface identity tensors. Let Î and î denote the (rank deficient) surface

identity tensors in E3 in the material and spatial configurations, respectively. Due to their intrinsic structures î ,

Î. Surface identity tensors should not be mistaken for the two-dimensional identities I2 and i2 in the material and

spatial configurations, respectively. The two-dimensional identities i2 = I2 have full rank, in contrast to their surface

9



Figure 5: The material and spatial configurations of a continuum body and its boundary and the associated deformation maps and deformation
gradients.

counterparts, and their matrix representation is a 2 × 2 matrix with 1 in the diagonal entries and 0 elsewhere. 2

2.3.1. Kinematics of the bulk

A material line element in the bulk dX ∈ TB0 is mapped to the corresponding spatial line element dx ∈ TBt via

the deformation gradient F. The inverse of the deformation gradient is denoted as f = F−1 and maps dx to dX, i.e.

dX = f · dx. We define the natural configuration B2 as a reference configuration.2 A material line element dX ∈ TB0

is mapped to the corresponding reference line element dξ ∈ TB2 via the linear map K = J−1. Clearly J maps dξ to

dX via dX = J · dξ. Similar to the material configuration, the mappings between the spatial line element dx and the

reference line element dξ ∈ TB2 are: dx = j · dξ and dξ = j−1 · dx = k · dx. The deformation gradient F can be

multiplicatively decomposed into the mapping from the material configuration to the reference configuration and from

the reference configuration to the spatial configuration, i.e. F = j · J−1 = j · K and analogously f = J · j−1 = J · k.

Finally, an infinitesimal volume element in the material configuration dV is mapped to dv, the infinitesimal volume

element in the spatial configuration, via the determinant of the deformation gradient, i.e. dv = Det F dV . The main

concepts and definitions of the kinematics of the bulk are gathered in Summary 3.

2.3.2. Kinematics of the surface

A material line element on the surface dX̂ ∈ TS0 is mapped to the corresponding spatial line element d̂x ∈ TSt

via the surface deformation gradient F̂. The inverse of the rank-deficient surface deformation gradient is denoted by

2Note that we distinguish between the material, spatial and natural configurations. A line element dX in the material configuration is mapped to
dx in the spatial configuration via the linear map F and to dξ in the natural (reference) configuration via K, see Summary 3. The material, spatial
and natural configurations on the surface are defined in a near-identical fashion to the bulk, see Summary 4.
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Summary 3 Kinematics of the bulk.

F =
∂x
∂X

= Gradx , dx = F · dX

[F] =

 ? ? ?
? ? ?
? ? ?


f =

∂X
∂x

= gradX , dX = f · dx

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

J =
∂X
∂ξ

, dX = J · dξ

j =
∂x
∂ξ

, dx = j · dξ

J · K = K · J = I

dx = j · dξ = j · K · dX ⇒ F = j · K

F =
∂x
∂X

=
∂x
∂ξ
·
∂ξ

∂X
=
∂x
∂ξi ·

∂ξi

∂X
= gi ⊗ Gi

F = g1 ⊗ G1 + g2 ⊗ G2 + g3 ⊗ G3

DetF =
dv
dV

=
g1 · [g2 × g3]

G1 · [G2 × G3]

DetF =
[F · G1] ·

[
[F · G2] × [F · G3]

]
G1 · [G2 × G3]

|

|

|

|

|

|

|

|

|

|

|

|

|

K =
∂ξ

∂X
, dξ = K · dX

k =
∂ξ

∂x
, dξ = k · dx

j · k = k · j = i

dX = J · dξ = J · k · dx ⇒ f = J · k

f =
∂X
∂x

=
∂X
∂ξ
·
∂ξ

∂x
=
∂X
∂ξi ·

∂ξi

∂x
= Gi ⊗ gi

f = G1 ⊗ g1 + G2 ⊗ g2 + G3 ⊗ g3

det f =
dV
dv

=
G1 · [G2 × G3]
g1 · [g2 × g3]

det f =
[ f · g1] ·

[
[ f · g2] × [ f · g3]

]
g1 · [g2 × g3]

f · F = I , det f = [DetF]−1 , F · f = i

f̂ and maps dx̂ to dX̂, i.e. dX̂ = f̂ · d̂x. The relation of F̂ to its inverse f̂ is defined as follows

f̂ · F̂ = Î and F̂ · f̂ = î .

In an identical fashion to the bulk, the (surface) natural configuration S2 is defined as a reference configuration. A

material line element dX̂ ∈ TS0 is mapped to the corresponding reference line element d̂ξ ∈ TS2 via the linear

map K̂. Clearly Ĵ maps d̂ξ to dX̂ via dX̂ = Ĵ · d̂ξ. Similar to the material configuration, the spatial line element d̂x

and the reference line element d̂ξ ∈ TS2 are related via the aforementioned mappings as follows: dx̂ = ĵ · d̂ξ and

d̂ξ = k̂ · d̂x. The deformation gradient F̂ can be multiplicatively decomposed into the mapping from the material
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configuration to the reference configuration and from the reference configuration to the spatial configuration, i.e.

F̂ = ĵ · K̂ and analogously f̂ = Ĵ · k̂. An infinitesimal area element in the material configuration dA is mapped to

da, the infinitesimal area element in the spatial configuration, via the surface determinant of the surface deformation

gradient, i.e. da = D̂etF̂ dA. The main concepts and definitions of the kinematics of the surface are gathered in

Summary 4.

Summary 4 Kinematics of the surface.

F̂ =
∂x̂
∂X̂

= Ĝrad̂x , dx̂ = F̂ · dX̂

[F̂] =

 ? ? 0
? ? 0
? ? 0


f̂ =

∂X̂
∂x̂

= ĝradX̂ , dX̂ = f̂ · dx̂

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ĵ =
∂X̂
∂̂ξ

, dX̂ = Ĵ · d̂ξ

ĵ =
∂x̂
∂̂ξ

, d̂x = ĵ · d̂ξ

Ĵ · K̂ = Î , K̂ · Ĵ = I2

d̂x = ĵ · d̂ξ = ĵ · K̂ · dX̂ ⇒ F̂ = ĵ · K̂

F̂ =
∂x̂
∂X̂

=
∂x̂
∂̂ξ
·
∂̂ξ

∂X̂
=
∂x̂
∂̂ξα
·
∂̂ξα

∂X̂
= ĝα ⊗ Ĝα

F̂ = ĝ1 ⊗ Ĝ1 + ĝ2 ⊗ Ĝ2

D̂etF̂ =
da
dA

=
|̂g1 × ĝ2|

|Ĝ1 × Ĝ2|
=

∣∣∣[F̂ · Ĝ1] × [F̂ · Ĝ2]
∣∣∣∣∣∣Ĝ1 × Ĝ2

∣∣∣

|

|

|

|

|

|

|

|

|

|

|

|

|

K̂ =
∂̂ξ

∂X̂
, d̂ξ = K̂ · dX̂

k̂ =
∂̂ξ

∂x̂
, d̂ξ = k̂ · d̂x

ĵ · k̂ = î , k̂ · ĵ = i2

dX̂ = Ĵ · d̂ξ = Ĵ · k̂ · d̂x ⇒ f̂ = Ĵ · k̂

f̂ =
∂X̂
∂x̂

=
∂X̂
∂̂ξ
·
∂̂ξ

∂x̂
=
∂X̂
∂̂ξα
·
∂̂ξα

∂x̂
= Ĝα ⊗ ĝα

f̂ = Ĝ1 ⊗ ĝ1 + Ĝ2 ⊗ ĝ2

d̂et̂ f =
dA
da

=
|Ĝ1 × Ĝ2|

|̂g1 × ĝ2|
=

∣∣∣[̂ f · ĝ1] × [̂ f · ĝ2]
∣∣∣∣∣∣̂g1 × ĝ2

∣∣∣
f̂ · F̂ = Î , d̂et̂ f = [D̂etF̂]−1 , F̂ · f̂ = î

Remark: Inverses of rank deficient tensors. The material Jacobian J, spatial Jacobian j and deformation

gradient F in the bulk are rank sufficient tensors and their inverses exist and are denoted as K = J−1, k = j−1

and f = F−1, respectively. It is worth emphasizing that their surface counterparts are rank deficient and thus, non-
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invertible. Therefore, the notation Ĵ−1, ĵ−1 and F̂−1 is intentionally not used in this manuscript. Nevertheless, K̂, k̂

and f̂ can be understood as the generalized inverses of Ĵ, ĵ and F̂, respectively, possessing the following properties:

K̂ · Ĵ = I2 , Ĵ · K̂ = Î , k̂ · ĵ = i2 , ĵ · k̂ = î , F̂ · f̂ = î , f̂ · F̂ = Î . 2

2.4. Governing equations

Let bp
0 denote the prescribed body force field per unit volume in the material configuration. The surface traction is

denoted by b̂p
0 and shall be understood as the prescribed surface force field per unit area in the material configuration.

The strong form of the balance of linear and angular momentum in the bulk and on the surface are given in Summary 5.

For further details on the derivations of the governing equations, in both the material and spatial configurations, see

Javili and Steinmann (2010b).

The weak form of the linear momentum balances for the bulk and surface are obtained by first testing the respective

strong form (from the left) with vector-valued (arbitrary) test functions δϕ ∈ H1
0 (B0) and δϕ̂ ∈ H1

0 (S0), respectively.

The result is then integrated over the corresponding domains in the material configurations, manipulated using the

identities

δϕ · DivP = Div(δϕ · P) − P : Gradδϕ and δϕ̂ · D̂ivP̂ = D̂iv(δϕ̂ · P̂) − P̂ : Ĝradδϕ̂ ,

which, together with the extended divergence theorems (Javili et al., 2013), the orthogonality properties of the surface

Piola stress measure (which cause the integrals containing the curvature terms to vanish), and the kinematic condition

δϕ̂ = δϕ|∂B0 , renders the weak form given in Summary 5. Note that in writing the weak forms we distinguish between

Neumann and Dirichlet-type boundary conditions. The domain SN
0 denotes the Neumann part of the boundary S0.

2.5. Constitutive relations

An isotropic hyperelastic material model is assumed for the constitutive response of the bulk (see Summary 6).

The free energy Ψ = Ψ(F) is parametrized by the Lamé moduli λ and µ. An evaluation of the first Piola–Kirchhoff

stress P := ∂Ψ/∂F and the Piola stress tangent A := ∂2Ψ/∂F∂F requires knowledge of the deformation gradient F

and its inverse f .

The constitutive relation on the surface is chosen to mimic that in the bulk (see Summary 7). In addition to a neo-

Hookean type hyperelastic response, the surface free energy Ψ̂ = Ψ̂(F̂) accounts for surface tension via the parameter

γ̂. The contribution of surface tension renders the surface free energy non-zero in the material configuration.

13



Summary 5 Governing equations.

Strong form:

balance of linear momentum balance of angular momentum
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
DivP + bp

0 = 0 , F · Pt = P · Ft in B0

D̂ivP̂ + b̂p
0 − P · N = 0 , F̂ · P̂t = P̂ · F̂t on S0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Weak form:∫

B0

P : Gradδϕ dV +

∫
S0

P̂ : Ĝradδϕ̂ dA

−

∫
B0

δϕ · bp
0 dV −

∫
SN

0

δϕ̂ · b̂p
0 dA = 0 ∀δϕ ∈ H1

0 (B0) , ∀δϕ̂ ∈ H1
0 (S0)

The assumption of isotropic and compressible neo-Hookean hyperelastic behaviour for the bulk and the surface is

made only for simplicity. The framework is valid for more general constitutive equations. Introducing anisotropy or

incompressibility into the constitutive response is straightforward. Nevertheless, it requires introducing extra numeri-

cal detail and further notation while providing little additional insight into the fundamental concepts.

The vast majority of models of surface elasticity presented in the literature are restricted to the linear theory. Care

must be taken when linearizing the full theory. In particular, the surface linear strain tensor is not the symmetric part

of the surface displacement gradient. The linear theory is given in Summaries 8 and 9.

It should be emphasized that the surface material constants are independent of the bulk ones. These constants can

be measured from atomistic calculations (Shenoy, 2005; Davydov et al., 2013). Dingreville and Qu (2007) developed

a semi-analytic method to compute the surface elastic properties of crystalline materials. Moreover, a surface energy

can be constructed using the surface Cauchy–Born hypothesis (Park and Klein, 2007). In Yvonnet et al. (2011) the

surface parameters are obtained from ab initio calculations.
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Summary 6 Hyperelastic material model for the bulk

J := DetF : Jacobian determinant µ , λ : Lamé constants

Free energy Ψ(F) = 1
2 λ ln2 J + 1

2 µ [F : F − 3 − 2 ln J]

Piola stress P(F) =
∂Ψ

∂F
= λ ln J f t + µ [F − f t]

Piola stress tangent A(F) =
∂P
∂F

= λ [ f t ⊗ f t + ln JD] + µ [I −D]

D :=
∂ f t

∂F
= − f t ⊗ f , I :=

∂F
∂F

= i⊗ I

Summary 7 Hyperelastic material model for the surface

Ĵ := D̂etF̂ : Surface Jacobian determinant µ̂ , λ̂ : Surface Lamé constants γ̂ : Surface tension

Surface Free energy Ψ̂(F̂) = 1
2 λ̂ ln2 Ĵ + 1

2 µ̂ [F̂ : F̂ − 2 − 2 ln Ĵ] + γ̂ Ĵ

Surface Piola stress P̂(F̂) =
∂Ψ̂

∂F̂
= λ̂ ln Ĵ f̂ t + µ̂ [F̂ − f̂ t] + γ̂ Ĵ f̂ t

Surface Piola stress tangent Â(F̂) =
∂P̂
∂F̂

= λ̂ [̂ f t ⊗ f̂ t + ln Ĵ D̂] + µ̂ [̂I − D̂] + γ̂ Ĵ [̂ f t ⊗ f̂ t + D̂]

D̂ :=
∂ f̂ t

∂F̂
= − f̂ t ⊗ f̂ + [i − î]⊗ [̂ f · f̂ t] , Î :=

∂F̂
∂F̂

= i⊗ Î
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Summary 8 Linear infinitesimal strain material model for the bulk

Grad u = F − I u : displacement vector ε : infinitesimal strain tensor

ε = [Grad u]sym = Isym : [Grad u] = [Grad u] + [Grad u]t Isym := 1
2 [I⊗ I + I⊗ I]

σ = E : ε , E = 3λ Ivol + 2µ Isym

σ : linearized stress tensor E : 4th.order elastic moduli Ivol := 1
3 I ⊗ I

Summary 9 Linear infinitesimal strain material model for the surface

Ĝrad û = F̂ − Î û : surface displacement vector ε̂ : surface infinitesimal strain tensor

ε̂ = [Ĝrad û]sym = Îsym : [Ĝrad û] , [Ĝrad û] + [Ĝrad û]t Îsym := 1
2 [̂I⊗ Î + Î⊗ Î]

σ̂ = Ê : ε̂ + γ̂ Î + γ̂ Ĝrad û , Ê = 2[̂λ + γ̂] Ivol + 2[̂µ − γ̂] Isym

σ̂ : linearized surface stress tensor Ê : 4th.order surface elastic moduli Îvol := 1
2 Î ⊗ Î
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3. Aspects of the numerical implementation

The finite element method is used to obtain approximate solutions to the governing equations presented in Sum-

mary 5. The linearization of the governing equations and the construction of the resulting matrix problem have been

presented in Javili and Steinmann (2010a). The complete documented source code and details of an efficient nu-

merical implementation which mimics the framework presented here (developed using the open source finite element

library deal.II (Bangerth et al., 2007, 2013)) are available in a companion paper (McBride and Javili, 2013). The

implementation uses various deal.II routines developed for the solution of partial differential equations on curved

manifolds (see e.g. DeSimone et al., 2009; Heltai, 2008). This set of routines is referred to as codimension one in

deal.II terminology. The codimension one routines greatly simplify the construction of the approximations to the

various surface operators. For example, one can obtain directly the value of the surface gradient operators at the

quadrature points of the surface mesh. The surface mesh is a two-dimensional manifold embedded in the surrounding

three-dimensional space and is extracted directly from the bulk mesh (see Fig. 6). Elements in the bulk and on the

surface are denoted Ωe and Ω̂e, respectively. The contribution from the bulk to the global tangent matrix in the matrix

problem is obtained by looping over all the bulk elements Ωe, assembling the element contribution, and then adding

this to the global tangent matrix. The contribution from the surface is obtained in a similar way. A loop is performed

over all surface elements Ω̂e and the tangent contribution calculated. A map between the degrees of freedom on the

surface and the bulk, denotedM, is then used to add the surface element’s contribution to the global tangent matrix.

⌦e b⌦eM

bulk triangulation surface triangulation

Figure 6: Discretization of the bulk (a nanowire) and the surface into elements.

A key step in the numerical solution procedure is the evaluation of the constitutive relations. From Summaries 10

and 11, it is clear that in order to evaluate the constitutive relations, an efficient procedure to determine the deformation

gradient and its inverse at the level of the quadrature point within an element is required. An efficient formulation
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is obtained by adopting the same methodology for both the bulk and the surface. The key steps to evaluate the

hyperelastic constitutive relations at the level of a typical quadrature point within an element in a finite element

scheme using this unified approach are provided in Summaries 10 and 11.

Summary 10 Key step to evaluate the constitutive relation at the level of a quadrature point in the bulk.
Preprocessing:

• Record the nodal coordinates, denoted XI and xI in the material and spatial configurations, respectively, corre-
sponding to each node I.

At each quadrature point ξ in the element Ωe:

• Interpolate the coordinates corresponding to ξ using the element shape functions N I(ξ):

X(ξ) =
∑

I

N I(ξ) XI , x(ξ) =
∑

I

N I(ξ) xI .

• Calculate covariant bases in the material and spatial configurations (Gi and gi):

Gi =
∑

I

∂N I

∂ξi XI , gi =
∑

I

∂N I

∂ξi xI .

• Calculate covariant metrics (matrices) in the material and spatial configurations ([Gi j] and [gi j]):

Gi j = Gi · G j , [Gi j] =

 G11 G12 G13
G21 G22 G23
G31 G32 G33

 , gi j = gi · g j , [gi j] =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 .
• Calculate contravariant metrics in the material and spatial configurations ([Gi j] and [gi j]):

[Gi j] = [Gi j]−1 , [gi j] = [gi j]−1 .

• Calculate contravariant bases in the material and spatial configurations(Gi and gi):

Gi = Gi j · G j , gi = gi j · g j .

• Calculate kinematic quantities required to evaluate the constitutive relations:

F = gi ⊗ Gi , Ft = Gi
⊗ gi , I = Gi ⊗ Gi , C = Ft · F = gi j Gi

⊗ G j

f = Gi ⊗ gi , f t = gi ⊗ Gi , i = gi ⊗ gi , b = F · Ft = Gi j gi ⊗ g j .
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Summary 11 Key step to evaluate the constitutive relation at the level of the quadrature point on the surface.
Preprocessing:

• Record the nodal coordinates in the material and spatial configurations, denoted X̂I and x̂I , respectively.

At each quadrature point ξ̂ in the element Ω̂e:

• Interpolate the coordinates corresponding to ξ̂ using the element shape functions N̂ I
(̂
ξ
)
:

X̂
(̂
ξ
)

=
∑

I

N̂ I
(̂
ξ
)

X̂I , x̂
(̂
ξ
)

=
∑

I

N̂ I
(̂
ξ
)

x̂I .

• Calculate covariant bases in the material and spatial configurations (Ĝα and ĝα):

Ĝα =
∑

I

∂N̂ I

∂̂ξα
X̂I , ĝα =

∑
I

∂N̂ I

∂̂ξα
x̂I .

• Calculate covariant metrics (matrices) in the material and spatial configurations (
[
Ĝαβ

]
and

[̂
gαβ

]
):

Ĝαβ = Ĝα · Ĝβ ,
[
Ĝαβ

]
=

[
Ĝ11 Ĝ12

Ĝ21 Ĝ22

]
, ĝαβ = ĝα · ĝβ ,

[̂
gαβ

]
=

[
ĝ11 ĝ12
ĝ21 ĝ22

]
.

• Calculate contravariant metrics in the material and spatial configurations (
[
Ĝαβ

]
and

[̂
g αβ

]
):[

Ĝαβ
]

=
[
Ĝαβ

]
−1 ,

[̂
g αβ

]
=

[̂
gαβ

]
−1 .

• Calculate contravariant bases in the material and spatial configurations (Gα and gα):

Ĝα = Ĝαβ · Ĝβ , ĝα = ĝ αβ · ĝβ .

• Calculate kinematic quantities required to evaluate the constitutive relations:

F̂ = ĝα ⊗ Ĝα , F̂t = Ĝα ⊗ ĝα , Î = Ĝα ⊗ Ĝα , Ĉ = F̂
t
· F̂ = ĝαβ Ĝα ⊗ Ĝβ

f̂ = Ĝα ⊗ ĝα , f̂ t = ĝα ⊗ Ĝα , î = ĝα ⊗ ĝα , b̂ = F̂ · F̂t = Ĝαβ ĝα ⊗ ĝβ

• Perform consistency check:

N =
Ĝ1 × Ĝ2∣∣∣Ĝ1 × Ĝ2

∣∣∣ ⇒ Î = I − N ⊗ N , F̂ = F · Î , n =
ĝ1 × ĝ2∣∣∣̂g1 × ĝ2

∣∣∣ ⇒ î = i − n⊗ n , f̂ = f · î .
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4. Numerical results

The objective of the current section is to elucidate key features of the formulation using three example problems.

The first example illustrates neo-Hookean type surface effects in a nanowire undergoing significant tensile extension.

Surface tension is omitted. The second example of a liquid bridge explores the role of isotropic surface tension. The

third example illustrates neo-Hookean type surface effects in a nanoscale plate with a realistic rough surface. The

constitutive relations are given in Summaries 6 and 7.

Trilinear and bilinear hexahedral and quadrilateral elements are used in the bulk and on the surface, respectively.

The linearized matrix problem is solved using the conjugate gradient method with Jacobi preconditioning. The finite

element formulation is implemented within the total Lagrangian framework. A Bubnov–Galerkin approach is adopted;

for more details on the finite element scheme see the companion paper (McBride and Javili, 2013).

4.1. Nanowire: neo-Hookean boundary potential

Surface elasticity theory has been used to describe successfully surface effects in nanowires (see e.g. Yun and

Park, 2009; Yvonnet et al., 2011). Consider the benchmark example shown in Fig. 7. The front and back pentagonal

faces are prevented from displacing in the X and Y directions. The wire is extended in the Z-direction by an amount of

2 (i.e. 40% of the original length). The unconstrained surfaces on the side of the wire are energetic, i.e. they possess

their own surface energy.

The triangulation of the bulk is more refined at the intersection of the faces on the surface and towards the front

and back faces. This is done to better resolve the expected stress concentrations. The bulk and surface are discretized

into 45 570 and 4500 elements, respectively. The prescribed deformation is applied uniformly in 10 steps.

The Lamé parameters in the bulk are fixed at the values given in Fig. 7. Similarly, the neo-Hookean energetic

surface is characterized by the surface Lamé parameters λ̂ and µ̂ (for a detailed discussion on surface material param-

eters see Javili and Steinmann, 2010b; Javili et al., 2012). The surface shear modulus µ̂ is set to zero and the ratio λ̂/λ

varied.

The response in the absence of a surface energy is obtained by choosing λ̂/λ = 0 and is shown in Fig. 7. The stress

in the bulk concentrates at the corners on the front and back faces. The initially pentagonal cross section reduces

almost uniformly in size along the length.

A surface energy is then assigned to the external surface. The stress in the bulk P concentrates along the lines

of intersection of the planes that form the external surface as the value of λ̂ increases. Increasing the surface energy

causes the resulting deformed cross section to tend to circular, thus increasing the stress in the bulk in regions where
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Figure 7: The triangulation and material configuration for the nanowire. The fixed material properties are given. The final spatial configuration of
the bulk and the surface for three different ratios of λ̂/λ are shown.

the surface is not smooth. The norm of the stress in the bulk |P| evaluated on the surface is compared to the norm of

the surface stress |P̂| in Fig. 8 for a ratio of λ̂/λ = 1.

4.2. Liquid bridge: isotropic surface tension effects

A liquid bridge is a thin film suspended between two rigid circular side walls, as depicted in Fig. 9. Surface

tension acts in the material configuration to deform the surface so as to minimize its surface area. The bulk and

surface triangulation contains 36 226 and 18 290 elements, respectively.

In order to model the liquid bridge using the approach adopted here, a bulk must be present. The bulk is a thin-

walled cylinder (with a thickness of 0.1) composed of a neo-Hookean material with Lamé parameters of λ = 0 and

µ = 10, and is enclosed by the energetic surface. Note that the surface free energy is non-zero in the reference

configuration.
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Figure 8: Comparison of |P| and |P̂| for the ratio of λ̂/λ = 1.
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Figure 9: The liquid bridge in the material configuration and the deformed state corresponding γ̂ = 100. The deflection of a point on the centre line
of the surface versus the value of γ̂ is shown.
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The surface free energy, i.e. γ̂, is linearly increased over 20 equal steps to a value of 100 and the displacement of

a point on the middle of the surface monitored. The deflection of the monitored point on the surface for varying γ̂ is

shown in Fig. 9. The configuration at two selected values of γ̂ is also shown. The majority of the deformation occurs

for γ̂ < 10. Thereafter, as γ̂ increases so the midpoint deflection converges to the analytical solution of 0.6373 (see

Javili and Steinmann, 2010a).

4.3. Bending of a nanoscale plate with a rough surface

Surface roughness can have a significant, and often complex, influence on the response of nanoscale objects (see

e.g. Wang et al., 2010a, and the references therein). Consider the cantilever plate shown in Fig. 10. The rough upper

surface is assumed energetic. All other surfaces are planar and standard. The Lamé parameters in the bulk are fixed

at the values given in Fig. 10. The surface shear modulus µ̂ is set to zero and the ratio λ̂/λ varied. The left edge of

the plate is fully fixed and a prescribed surface traction of b̂p
0 = [0, 0, −1e4] is imposed incrementally (in 10 uniform

steps) on the lower face. The bulk and surface triangulation contains 250 000 and 10 000 elements, respectively. The

profile of the upper surface was produced using an open source rough surface generation tool (Bergström, 2013).3

The response of the plate to the loading for λ̂/λ = 0 and λ̂/λ = 1 are compared in Fig. 10. The plate with the

energetic rough surface deforms less.

The example of the cantilever plate with the rough surface provides a good test of the robustness of the numerical

implementation. The Newton scheme exhibited the quadratic convergence associated with a consistently derived

tangent. Furthermore, the example demonstrates the effectiveness of the curvilinear coordinate framework to describe

complex surface geometries.

5. Discussion and conclusions

A finite element methodology based on describing the surface and bulk behaviour using a curvilinear coordinate

framework has been presented. The advantage of such a methodology is clear for problems in surface elasticity: the

computation of the surface quantities is straightforward. The key steps required to evaluate the constitutive relations

at the level of the quadrature point have also been presented. The implementation of the formulation within an open

source finite element library is discussed in a companion contribution (McBride and Javili, 2013). The use of adaptive

finite element methods and the development of a distributed parallel solution strategy, necessary when modelling

realistic and complex geometries, is the focus of ongoing research.

3The routine used, rsgene2D, produces a Gaussian height distribution with an exponential auto-covariance. The input parameters were 100
divisions, a surface length of 2, a root mean square height of 0.05, and an (isotropic) correlation length of 0.25.
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Figure 10: The triangulation and material configuration for the cantilever plate. The fixed material properties are given. The final spatial configu-
ration of the bulk for two different ratios of λ̂/λ are shown. The magnitude of the displacement u and the Frobenius norm of the Cauchy stress σ
fields are plotted.
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Saksono, P. H., Perić, D., 2005. On finite element modelling of surface tension Variational formulation and applications Part I: Quasistatic

problems. Computational Mechanics 38 (3), 265–281.

Scriven, L. E., 1960. Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chemical Engineering Science 12 (2), 98–108.

Scriven, L. E., Sternling, C. V., 1960. The marangoni effects. Nature 187, 186–188.

Sharma, P., Ganti, S., 2004. Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies. Journal of

Applied Mechanics 71, 663–671.

Sharma, P., Ganti, S., Bhate, N., 2003. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters

82 (4), 535–537.

Sharma, P., Wheeler, L. T., 2007. Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension. Journal of

Applied Mechanics 74 (3), 447–454.

Shenoy, V. B., 2005. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B 71 (9), 1–11.

Shuttleworth, R., 1950. The surface tension of solids. Proceedings of the Physical Society. Section A 63 (5), 444–457.

26



Steigmann, D. J., 2009. A concise derivation of membrane theory from three-dimensional nonlinear elasticity. Journal of Elasticity 97, 97–101.

Sussmann, C., Givoli, D., Benveniste, Y., 2011. Combined asymptotic finite-element modeling of thin layers for scalar elliptic problems. Computer

Methods in Applied Mechanics and Engineering 200 (4748), 3255–3269.

Wang, Y., Weissmüller, J., Duan, H. L., 2010a. Mechanics of corrugated surfaces. Journal of the Mechanics and Physics of Solids 58, 1552–1566.

Wang, Z.-Q., Zhao, Y.-P., Huang, Z.-P., 2010b. The effects of surface tension on the elastic properties of nano structures. International Journal of

Engineering Science 48 (2), 140–150.

Wei, G. W., Shouwen, Y. u., Ganyun, H., 2006. Finite element characterization of the size-dependent mechanical behaviour in nanosystems.

Nanotechnology 17 (4), 1118–1122.

Weissmüller, J., Duan, H.-L., Farkas, D., 2010. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Materialia 58 (1),

1–13.

Wriggers, P., 2008. Nonlinear finite elemetn methods. Springer.

Yun, G., Park, H. S., 2009. Surface stress effects on the bending properties of fcc metal nanowires. Physical Review B 79 (19), 32–35.

Yvonnet, J., Mitrushchenkov, A., Chambaud, G., He, Q.-C., 2011. Finite element model of ionic nanowires with size-dependent mechanical

properties determined by ab initio calculations. Computer Methods in Applied Mechanics and Engineering 200 (5-8), 614–625.

Yvonnet, J., Quang, H. L., He, Q.-C., 2008. An XFEM level set approach to modelling surface-interface effects and computing the size-dependent

effective properties of nanocomposites. Computational Mechanics 42 (1), 119–131.

27


