14 research outputs found

    A standardized kinesin nomenclature

    Get PDF
    In recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered

    Regulation of Plant Developmental Processes by a Novel Splicing Factor

    Get PDF
    Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes

    Expression of U1 Small Nuclear Ribonucleoprotein 70K Antisense Transcript Using APETALA3 Promoter Suppresses the Development of Sepals and Petals

    No full text
    U1 small nuclear ribonucleoprotein (snRNP)-70K (U1-70K), a U1 snRNP-specific protein, is involved in the early stages of spliceosome formation. In non-plant systems, it is involved in constitutive and alternative splicing. It has been shown that U1snRNP is dispensable for in vitro splicing of some animal pre-mRNAs, and inactivation of U1-70K in yeast (Saccharomyces cerevisiae) is not lethal. As in yeast and humans (Homo sapiens), plant U1-70K is coded by a single gene. In this study, we blocked the expression of Arabidopsis U1-70K in petals and stamens by expressing U1-70K antisense transcript using the AP3 (APETALA3) promoter specific to these floral organs. Flowers of transgenic Arabidopsis plants expressing U1-70K antisense transcript showed partially developed stamens and petals that are arrested at different stages of development. In some transgenic lines, flowers have rudimentary petals and stamens and are male sterile. The severity of the phenotype is correlated with the level of the antisense transcript. Molecular analysis of transgenic plants has confirmed that the observed phenotype is not due to disruption of whorl-specific homeotic genes, AP3 or PISTILLATA, responsible for petal and stamen development. The AP3 transcript was not detected in transgenic flowers with severe phenotype. Flowers of Arabidopsis plants transformed with a reporter gene driven by the same promoter showed no abnormalities. These results show that U1-70K is necessary for the development of sepals and petals and is an essential gene in plants

    Implementing a Rational and Consistent Nomenclature for Serine/Arginine-Rich Protein Splicing Factors (SR Proteins) in Plants

    No full text
    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species

    Complexity of the Alternative Splicing Landscape in Plants

    No full text

    Exploring the relationship between intron retention and chromatin accessibility in plants

    No full text
    Abstract Background Intron retention (IR) is the most prevalent form of alternative splicing in plants. IR, like other forms of alternative splicing, has an important role in increasing gene product diversity and regulating transcript functionality. Splicing is known to occur co-transcriptionally and is influenced by the speed of transcription which in turn, is affected by chromatin structure. It follows that chromatin structure may have an important role in the regulation of splicing, and there is preliminary evidence in metazoans to suggest that this is indeed the case; however, nothing is known about the role of chromatin structure in regulating IR in plants. DNase I-seq is a useful experimental tool for genome-wide interrogation of chromatin accessibility, providing information on regions of chromatin with very high likelihood of cleavage by the enzyme DNase I, known as DNase I Hypersensitive Sites (DHSs). While it is well-established that promoter regions are highly accessible and are over-represented with DHSs, not much is known about DHSs in the bodies of genes, and their relationship to splicing in general, and IR in particular. Results In this study we use publicly available DNase I-seq data in arabidopsis and rice to investigate the relationship between IR and chromatin structure. We find that IR events are highly enriched in DHSs in both species. This implies that chromatin is more open in retained introns, which is consistent with a kinetic model of the process whereby higher speeds of transcription in those regions give less time for the spliceosomal machinery to recognize and splice out those introns co-transcriptionally. The more open chromatin in IR can also be the result of regulation mediated by DNA-binding proteins. To test this, we performed an exhaustive search for footprints left by DNA-binding proteins that are associated with IR. We identified several hundred short sequence elements that exhibit footprints in their DNase I-seq coverage, the telltale sign for binding events of a regulatory protein, protecting its binding site from cleavage by DNase I. A highly significant fraction of those sequence elements are conserved between arabidopsis and rice, a strong indication of their functional importance. Conclusions In this study we have established an association between IR and chromatin accessibility, and presented a mechanistic hypothesis that explains the observed association from the perspective of the co-transcriptional nature of splicing. Furthermore, we identified conserved sequence elements for DNA-binding proteins that affect splicing

    Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression[W][OA]

    No full text
    Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca2+ level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca2+ and Ca2+/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca2+- and Ca2+/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca2+-regulated transcriptional networks

    Origin and Evolution of Kinesin-Like Calmodulin-Binding Protein

    No full text
    Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin-14 family, is a C-terminal microtubule motor with three unique domains including a myosin tail homology region 4 (MyTH4), a talin-like domain, and a calmodulin-binding domain (CBD). The MyTH4 and talin-like domains (found in some myosins) are not found in other reported kinesins. A calmodulin-binding kinesin called kinesin-C (SpKinC) isolated from sea urchin (Strongylocentrotus purpuratus) is the only reported kinesin with a CBD. Analysis of the completed genomes of Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and a red alga (Cyanidioschyzon merolae 10D) did not reveal the presence of a KCBP. This prompted us to look at the origin of KCBP and its relationship to SpKinC. To address this, we isolated KCBP from a gymnosperm, Picea abies, and a green alga, Stichococcus bacillaris. In addition, database searches resulted in identification of KCBP in another green alga, Chlamydomonas reinhardtii, and several flowering plants. Gene tree analysis revealed that the motor domain of KCBPs belongs to a clade within the Kinesin-14 (C-terminal motors) family. Only land plants and green algae have a kinesin with the MyTH4 and talin-like domains of KCBP. Further, our analysis indicates that KCBP is highly conserved in green algae and land plants. SpKinC from sea urchin, which has the motor domain similar to KCBP and contains a CBD, lacks the MyTH4 and talin-like regions. Our analysis indicates that the KCBPs, SpKinC, and a subset of the kinesin-like proteins are all more closely related to one another than they are to any other kinesins, but that either KCBP gained the MyTH4 and talin-like domains or SpKinC lost them
    corecore