409 research outputs found
Genetic disruption of sod1 gene causes glucose intolerance and impairs b-cell function
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. b-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo b-cell insulin secretion and decreased b-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to b-cell dysfunction. © 2013 by the American Diabetes Association
Towards Blockchain-Based Auditing of Data Exchanges
Auditing operations in multi-party data exchange, and over an arbitrary topology, is a common requirement yet still an open problem especially in the case where no trust on any participating party can be presumed. The challenges range from storage of the audit trail to tampering and collusion of participating entities. In this paper, we propose a blockchain-based auditing scheme. It is designed based on public key infrastructure and Shamir secret sharing scheme
Polarization state of the optical near-field
The polarization state of the optical electromagnetic field lying several
nanometers above complex dielectric structures reveals the intricate
light-matter interaction that occurs in this near-field zone. This information
can only be extracted from an analysis of the polarization state of the
detected light in the near-field. These polarization states can be calculated
by different numerical methods well-suited to near--field optics. In this
paper, we apply two different techniques (Localized Green Function Method and
Differential Theory of Gratings) to separate each polarisation component
associated with both electric and magnetic optical near-fields produced by
nanometer sized objects. The analysis is carried out in two stages: in the
first stage, we use a simple dipolar model to achieve insight into the physical
origin of the near-field polarization state. In the second stage, we calculate
accurate numerical field maps, simulating experimental near-field light
detection, to supplement the data produced by analytical models. We conclude
this study by demonstrating the role played by the near-field polarization in
the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
Discrete structure of ultrathin dielectric films and their surface optical properties
The boundary problem of linear classical optics about the interaction of
electromagnetic radiation with a thin dielectric film has been solved under
explicit consideration of its discrete structure. The main attention has been
paid to the investigation of the near-zone optical response of dielectrics. The
laws of reflection and refraction for discrete structures in the case of a
regular atomic distribution are studied and the structure of evanescent
harmonics induced by an external plane wave near the surface is investigated in
details. It is shown by means of analytical and numerical calculations that due
to the existence of the evanescent harmonics the laws of reflection and
refraction at the distances from the surface less than two interatomic
distances are principally different from the Fresnel laws. From the practical
point of view the results of this work might be useful for the near-field
optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.
Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs
Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6–9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M.tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M.tuberculosis. In this study, a comparative homology model of M.tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC50 values ranging from 20 – 100 µg/ml and two of these exhibited weak inhibition of M.tuberculosis growth with MIC99 values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M.tuberculosis growth with an MIC99 value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M.tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis
Intra-Organ Variation in Age-Related Mutation Accumulation in the Mouse
Using a transgenic mouse model harboring chromosomally integrated lacZ mutational target genes, we previously demonstrated that mutations accumulate with age much more rapidly in the small intestine than in the brain. Here it is shown that in the small intestine point mutations preferentially accumulate in epithelial cells of the mucosa scraped off the underlying serosa. The mucosal cells are the differentiated villus cells that have undergone multiple cell divisions. A smaller age-related increase, also involving genome rearrangements, was observed in the serosa, which consists mainly of the remaining crypts and non-dividing smooth muscle cells. In the brain we observed an accumulation of only point mutations in no other areas than hypothalamus and hippocampus. To directly test for cell division as the determining factor in the generation of point mutations we compared mutation induction between mitotically active and quiescent embryonic fibroblasts from the same lacZ mice, treated with either UV (a point mutagen) or hydrogen peroxide (a clastogen). The results indicate that while point mutations are highly replication-dependent, genome rearrangements are as easily induced in non-dividing cells as in mitotically active ones. This strongly suggests that the point mutations found to have accumulated in the mucosal part of the small intestine are the consequence of replication errors. The same is likely true for point mutations accumulating in hippocampus and hypothalamus of the brain since neurogenesis in these two areas continues throughout life. The observed intra-organ variation in mutation susceptibility as well as the variation in replication dependency of different types of mutations indicates the need to not only extend observations made on whole organs to their sub-structures but also take the type of mutations and mitotic activity of the cells into consideration. This should help elucidating the impact of genome instability and its consequences on aging and disease
Function of von Willebrand factor after crossed bone marrow transplantation between normal and von Willebrand disease pigs: effect on arterial thrombosis in chimeras.
von Willebrand factor (vWF) is essential for the induction of occlusive thrombosis in stenosed and injured pig arteries and for normal hemostasis. To separate the relative contribution of plasma and platelet vWF to arterial thrombosis, we produced chimeric normal and von Willebrand disease pigs by crossed bone marrow transplantation; von Willebrand disease (vWD) pigs were engrafted with normal pig bone marrow and normal pigs were engrafted with vWD bone marrow. Thrombosis developed in the chimeric normal pigs that showed normal levels of plasma vWF and an absence of platelet vWF; but no thrombosis occurred in the chimeric vWD pigs that demonstrated normal platelet vWF and an absence of plasma vWF. The ear bleeding times of the chimeric pigs were partially corrected by endogenous plasma vWF but not by platelet vWF. Our animal model demonstrated that vWF in the plasma compartment is essential for the development of arterial thrombosis and that it also contributes to the maintenance of bleeding time and hemostasis
Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?
We investigate the origin, the shape, the scatter, and the cosmic evolution
in the observed relationship between specific angular momentum and
the stellar mass in early-type (ETGs) and late-type galaxies (LTGs).
Specifically, we exploit the observed star-formation efficiency and chemical
abundance to infer the fraction f_\rm inf of baryons that infall toward the
central regions of galaxies where star formation can occur. We find f_\rm
inf\approx 1 for LTGs and for ETGs with an uncertainty of about
dex, consistent with a biased collapse. By comparing with the locally
observed vs. relations for LTGs and ETGs we estimate the
fraction of the initial specific angular momentum associated to the
infalling gas that is retained in the stellar component: for LTGs we find
, in line with the classic disc formation
picture; for ETGs we infer , that can be
traced back to a evolution via dry mergers. We also show that the
observed scatter in the vs. relation for both galaxy
types is mainly contributed by the intrinsic dispersion in the spin parameters
of the host dark matter halo. The biased collapse plus mergers scenario implies
that the specific angular momentum in the stellar components of ETG progenitors
at is already close to the local values, in pleasing agreement with
observations. All in all, we argue such a behavior to be imprinted by nature
and not nurtured substantially by the environment
Resolve and eco: the halo mass-dependent shape of galaxy stellar and baryonic mass functions
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ∼ 10^9.1 M⊙, probing the gas-rich dwarf regime below Mbary ∼ 10^10 M⊙. The second, ECO, covers a ~40× larger volume (containing RESOLVE-A) and is complete to Mbary ~10^9.4 M⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below Mstar ~10^10 M⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 M⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF separated into four physically motivated halo mass regimes reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass < 10^13.5 M⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and/or stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution
- …