579 research outputs found

    Impact of Culturally Tailored Shared Medical Appointments on Diabetes Self-Care Ability and Knowledge in African Americans

    Get PDF
    Background: Type 2 diabetes mellitus (T2DM) continues to disproportionately affect African Americans, significantly impacting morbidity and mortality. Research suggests that addressing barriers that stem from socioeconomic circumstances, systemic inequalities, biological factors, and cultural factors may positively influence biometric indicators of health and diabetes control. Objective: The aim of this study was to evaluate a diabetes shared medical appointment (SMA) model program that has been culturally tailored to address the unique social determinants of health barriers faced by an inner city African American population in Norfolk, Virginia. Methods: A pilot study using a within-group pretest–posttest design was conducted. Information was collected from self-report surveys that included the Modified Michigan Diabetes Knowledge Test, the Diabetes Self-Efficacy Scale, and researcher generated surveys before and after a single-session three-hour SMA program. Key Results: The program increased perceived diabetes self-care confidence and perceived overall diabetes knowledge levels. Increases in knowledge scores were seen but not statistically significant. Participants reported high levels of satisfaction with the program model. Discussion: Findings indicate that this model is an effective and engaging method of improving self-care ability and diabetes disease management knowledge among African Americans. Addressing unique circumstances and barriers experienced by this population may be more effective than usual traditional care approaches

    Channel choice complications:Exploring the multiplex nature of citizens' channel choices

    Get PDF
    Part 2: E-Government Services and Open GovernmentInternational audienceIn spite of massive investment and increased adoption of digital services, citizens continue to use traditional channels to interact with public organizations. The channel choice (CC) field of research tries to understand citizens’ interactions with public authorities to make the interaction more efficient and increase citizen satisfaction. However, most studies have been conducted either as surveys of hypothetical services or in experimental settings, leading to a lack of empirical data from actual use contexts. Therefore, we present the results of a sequential mixed methods study which combines observations of citizen-caseworker interaction in a call center, contextual interviews with callers, and a survey classifying topics from 10,000 telephone calls. We contribute to the CC field and practice with rich empirical data from studies of actual channel choices. Specifically, the study explores the multiplex nature of real-life CC and demonstrate how telephone calls can be part of a process, which occurs across both traditional and digital channels. Moreover, we identify problems, which cause telephone calls related to digital services, and classify these in two groups: information related problems and action related problems

    Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas

    Get PDF
    AbstractPurpose: Apoptosis is a physiologic mechanism of cell death that regulates mass and architecture in many tissues. Apoptosis has been described as a feature in human vascular atherosclerosis and large vessel structural integrity. We examined the extent of vascular smooth muscle cell (VSMC) apoptosis in aneurysmal, occlusive, and normal human aortic tissue. Methods: Tissue samples of aneurysmal, occlusive, and normal human infrarenal aorta were evaluated. DNA fragmentation detection methods, immunohistochemistry, and DNA electrophoresis determined VSMC density, VSMC apoptosis, and apoptosis markers. Apoptotic cells and VSMC nuclei were counted with the use of computer-generated image analysis. Aortic subtypes were compared statistically by analysis of variance. Results: Seventeen aneurysmal, ten occlusive, and five normal human aortas were evaluated. By α1-actin immunostaining, VSMC density was least in aneurysmal aortas (271.8 ± 13.5 cells/high-power field [HPF]) compared with occlusive aorta (278.2 ± 39.4 cells/HPF) and normal aortas (291.0 ± 25.4 cells/HPF; P = not significant). Presence of apoptotic VSMCs was demonstrated by terminal deoxynucleotidyl transferase fragment end labeling and propidium iodide nuclear staining. VSMC apoptosis was greatest within aneurysmal aortas with 11.7 ± 1.5 cells/HPF compared with occlusive aortas with 3.3 ± 0.8 cells/HPF (P <.05) and normal aortas with 3.75 ± 4.6 cells/HPF (P <.05). Significant differences in apoptosis markers, p53 or bcl-2, could not be demonstrated by immunohistochemistry or DNA electrophoresis in aortic subtypes. Conclusion: Apoptosis of VSMCs is increased and VSMC density is decreased within the medial layer of aneurysmal aortic tissue. Structural degeneration of aortic tissue at the cellular level contributes to aneurysmal formation. (J Vasc Surg 2000;31:567-576.

    Mapping analysis and planning system for the John F. Kennedy Space Center

    Get PDF
    Environmental management, impact assessment, research and monitoring are multidisciplinary activities which are ideally suited to incorporate a multi-media approach to environmental problem solving. Geographic information systems (GIS), simulation models, neural networks and expert-system software are some of the advancing technologies being used for data management, query, analysis and display. At the 140,000 acre John F. Kennedy Space Center, the Advanced Software Technology group has been supporting development and implementation of a program that integrates these and other rapidly evolving hardware and software capabilities into a comprehensive Mapping, Analysis and Planning System (MAPS) based in a workstation/local are network environment. An expert-system shell is being developed to link the various databases to guide users through the numerous stages of a facility siting and environmental assessment. The expert-system shell approach is appealing for its ease of data access by management-level decision makers while maintaining the involvement of the data specialists. This, as well as increased efficiency and accuracy in data analysis and report preparation, can benefit any organization involved in natural resources management

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Buckling and force propagation along intracellular microtubules

    Get PDF
    Motivated by recent experiments showing the compressive buckling of microtubules in cells, we study theoretically the mechanical response of and force propagation along elastic filaments embedded in a non-linear elastic medium. We find that embedded microtubules buckle when their compressive load exceeds a critical value

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.

    Reproducing the Stellar Mass/Halo Mass Relation in Simulated LCDM Galaxies: Theory vs Observational Estimates

    Full text link
    We examine the present-day total stellar-to-halo mass (SHM) ratio as a function of halo mass for a new sample of simulated field galaxies using fully cosmological, LCDM, high resolution SPH + N-Body simulations.These simulations include an explicit treatment of metal line cooling, dust and self-shielding, H2 based star formation and supernova driven gas outflows. The 18 simulated halos have masses ranging from a few times 10^8 to nearly 10^12 solar masses. At z=0 our simulated galaxies have a baryon content and morphology typical of field galaxies. Over a stellar mass range of 2.2 x 10^3 to 4.5 x 10^10 solar masses, we find extremely good agreement between the SHM ratio in simulations and the present-day predictions from the statistical Abundance Matching Technique presented in Moster et al. (2012). This improvement over past simulations is due to a number systematic factors, each decreasing the SHM ratios: 1) gas outflows that reduce the overall SF efficiency but allow for the formation of a cold gas component 2) estimating the stellar masses of simulated galaxies using artificial observations and photometric techniques similar to those used in observations and 3) accounting for a systematic, up to 30 percent overestimate in total halo masses in DM-only simulations, due to the neglect of baryon loss over cosmic times. Our analysis suggests that stellar mass estimates based on photometric magnitudes can underestimate the contribution of old stellar populations to the total stellar mass, leading to stellar mass errors of up to 50 percent for individual galaxies. These results highlight the importance of using proper techniques to compare simulations with observations and reduce the perceived tension between the star formation efficiency in galaxy formation models and in real galaxies.Comment: Submitted to ApJ 9 pages, 5 figure
    • 

    corecore