27 research outputs found

    Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt's lymphoma Akata cells

    Get PDF
    Epigenetic silencing of regulatory genes by aberrant methylation contributes to tumorigenesis. DNA methyltransferase inhibitors (DNMTI) represent promising new drugs for anti-cancer therapies. The DNMTI 5-Azacytidine is effective against myelodysplastic syndrome, but induces switching of latent to lytic Epstein-Barr virus (EBV) in vitro and results in EBV DNA demethylation with the potential of induction of lytic EBV in vivo. This is of considerable concern given that recurrent lytic EBV has been linked with an increased incidence of EBV-associated lymphomas. Based on the distinct properties of action we hypothesized that the newer DNMTI Zebularine might differ from 5-Azacytidine in its potential to induce switching from latent to lytic EBV. Here we show that both 5-Azacytidine and Zebularine are able to induce expression of E-cadherin, a cellular gene frequently silenced by hypermethylation in cancers, and thus demonstrate that both DNMTI are active in our experimental setting consisting of EBV-harboring Burkitt's lymphoma Akata cells. Quantification of mRNA expression of EBV genes revealed that 5-Azacytidine induces switching from latent to lytic EBV and, in addition, that the immediate-early lytic infection progresses to early and late lytic infection. Furthermore, 5-Azacytidine induced upregulation of the latent EBV genes LMP2A, LMP2B, and EBNA2 in a similar fashion as observed following switching of latent to lytic EBV upon cross-linking of the B-cell receptor. In striking contrast, Zebularine did not exhibit any effect neither on lytic nor on latent EBV gene expression. Thus, Zebularine might be safer than 5-Azacytidine for the treatment of cancers in EBV carriers and could also be applied against EBV-harboring tumors, since it does not induce switching from latent to lytic EBV which may result in secondary EBV-associated malignancies

    p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans

    Get PDF
    Type II endometrial carcinomas are a highly aggressive group of tumour subtypes that are frequently associated with inactivation of the TP53 tumour suppressor gene. We show that mice with endometrium-specific deletion of Trp53 initially exhibited histological changes that are identical to known precursor lesions of type II endometrial carcinomas in humans and later developed carcinomas representing all type II subtypes. The mTORC1 signalling pathway was frequently activated in these precursor lesions and tumours, suggesting a genetic cooperation between this pathway and Trp53 deficiency in tumour initiation. Consistent with this idea, analyses of 521 human endometrial carcinomas identified frequent mTORC1 pathway activation in type I as well as type II endometrial carcinoma subtypes. mTORC1 pathway activation and p53 expression or mutation status each independently predicted poor patient survival. We suggest that molecular alterations in p53 and the mTORC1 pathway play different roles in the initiation of the different endometrial cancer subtypes, but that combined p53 inactivation and mTORC1 pathway activation are unifying pathogenic features among histologically diverse subtypes of late stage aggressive endometrial tumours

    Ultra-deep sequencing confirms immunohistochemistry as a highly sensitive and specific method for detecting BRAF (V600E) mutations in colorectal carcinoma

    Full text link
    The activating BRAF (V600) mutation is a well-established negative prognostic biomarker in metastatic colorectal carcinoma (CRC). A recently developed monoclonal mouse antibody (clone VE1) has been shown to detect reliably BRAF (V600E) mutated protein by immunohistochemistry (IHC). In this study, we aimed to compare the detection of BRAF (V600E) mutations by IHC, Sanger sequencing (SaS), and ultra-deep sequencing (UDS) in CRC. VE1-IHC was established in a cohort of 68 KRAS wild-type CRCs. The VE1-IHC was only positive in the three patients with a known BRAF (V600E) mutation as assessed by SaS and UDS. The test cohort consisted of 265 non-selected, consecutive CRC samples. Thirty-nine out of 265 cases (14.7 %) were positive by VE1-IHC. SaS of 20 randomly selected IHC negative tumors showed BRAF wild-type (20/20). Twenty-four IHC-positive cases were confirmed by SaS (24/39; 61.5 %) and 15 IHC-positive cases (15/39; 38.5 %) showed a BRAF wild-type by SaS. UDS detected a BRAF (V600E) mutation in 13 of these 15 discordant cases. In one tumor, the mutation frequency was below our threshold for UDS positivity, while in another case, UDS could not be performed due to low DNA amount. Statistical analysis showed sensitivities of 100 % and 63 % and specificities of 95 and 100 % for VE1-IHC and SaS, respectively, compared to combined results of SaS and UDS. Our data suggests that there is high concordance between UDS and IHC using the anti-BRAF(V600E) (VE1) antibody. Thus, VE1 immunohistochemistry is a highly sensitive and specific method in detecting BRAF (V600E) mutations in colorectal carcinoma

    VHL gene mutations and their effects on hypoxia inducible factor HIF{alpha}: Identification of potential driver and passenger mutations

    Full text link
    Mutations of the von Hippel-Lindau gene (VHL) are frequent in clear cell renal cell carcinomas (ccRCC). Nonsense and frameshift mutations abrogate the function of the VHL protein (pVHL), whereas missense mutations can have different effects. To identify those missense mutations with functional consequences, we sequenced VHL in 256 sporadic ccRCC and identified 187 different VHL mutations of which 65 had missense mutations. Location and destabilizing effects of VHL missense mutations were determined in silico. The majority of thermodynamically destabilizing missense mutations were located in exon 1 in the core of pVHL, while protein surface mutations in exon 3 affected the interaction domains of elongin B and C. Their impact on pVHL's functionality was further investigated in vitro by stably re-introducing VHL missense mutations into a VHL null cell line and by monitoring the GFP signals after the transfection of a HIFα-GFP expression vector. pVHL's functionality ranged from no effect to complete HIF stabilization. Interestingly, Asn78Ser, Asp121Tyr, and Val130Phe selectively influenced HIF1α and HIF2α degradation. In sum, we obtained three different groups of missense mutations: one with severe destabilization of pVHL, a second without destabilizing effects on pVHL but relevance for the interaction with HIFα, elongin B, or elongin C, and a third with pVHL functions comparable to wild-type. We therefore conclude that the specific impact of missense mutations may help to distinguish between driver and passenger mutations and may explain responses of ccRCC patients to HIF targeted therapies.pVHL's functionality ranged from no effect to complete HIF stabilization. Interestingly, Asn78Ser, Asp121Tyr, and Val130Phe selectively influenced HIF1α and HIF2α degradation. In sum, we obtained three different groups of missense mutations: one with severe destabilization of pVHL, a second without destabilizing effects on pVHL but relevance for the interaction with HIFα, elongin B, and elongin C, and a third with pVHL functions comparable to wild-type. We therefore conclude that the specific impact of missense mutations may help to distinguish between driver and passenger mutations and may explain responses of ccRCC patients to HIF targeted therapies

    Setting a diagnostic benchmark for tumor BRCA testing: Detection of BRCA1 and BRCA2 large genomic rearrangements in FFPE tissue - A pilot study

    Get PDF
    PARP inhibitors are used for treatment of tumors lacking function of the double-strand DNA break repair proteins BRCA1 or BRCA2 and are already approved for several cancer types. Thus, it is clinically crucial to determine germline as well as somatic BRCA1/2 mutations in those patients. The amplicon-based Oncomine BRCA1 and BRCA2 Assay is a test routinely used in diagnostics with FFPE specimens. The assay is validated for the detection of mutations, however, data on its performance in detecting large genomic rearrangements in FFPE tissue, is scarce. We cross-validated Oncomine BRCA1 and BRCA2 Assay in blood samples and/or FFPE tissue with multiplex ligation-dependent probe amplification (MLPA) for exon deletions and with OncoScan and an in-house hybridization-based target capture assay (MelArray) with a customized pipeline for the detection of loss of heterozygosity (LOH) and heterozygous versus complete gene loss. The Oncomine BRCA1 and BRCA2 Assay could detect both exon deletion and mono- and bi-allelic losses of the BRCA1/2 genes. We show that the therapeutically relevant large genomic rearrangements are reliably detected with the amplicon-based Oncomine BRCA1 and BRCA2 Assay in FFPE tumor tissue. Based on our data, we suggest tumor BRCA testing as standard diagnostic prescreening prior to germline BRCA testing

    Automated assessment of β-cell area and density per islet and patient using TMEM27 and BACE2 immunofluorescence staining in human pancreatic β-cells

    Get PDF
    In this study we aimed to establish an unbiased automatic quantification pipeline to assess islet specific features such as β-cell area and density per islet based on immunofluorescence stainings. To determine these parameters, the in vivo protein expression levels of TMEM27 and BACE2 in pancreatic islets of 32 patients with type 2 diabetes (T2D) and in 28 non-diabetic individuals (ND) were used as input for the automated pipeline. The output of the automated pipeline was first compared to a previously developed manual area scoring system which takes into account the intensity of the staining as well as the percentage of cells which are stained within an islet. The median TMEM27 and BACE2 area scores of all islets investigated per patient correlated significantly with the manual scoring and with the median area score of insulin. Furthermore, the median area scores of TMEM27, BACE2 and insulin calculated from all T2D were significantly lower compared to the one of all ND. TMEM27, BACE2, and insulin area scores correlated as well in each individual tissue specimen. Moreover, islet size determined by costaining of glucagon and either TMEM27 or BACE2 and β-cell density based either on TMEM27 or BACE2 positive cells correlated significantly. Finally, the TMEM27 area score showed a positive correlation with BMI in ND and an inverse pattern in T2D. In summary, automated quantification outperforms manual scoring by reducing time and individual bias. The simultaneous changes of TMEM27, BACE2, and insulin in the majority of the β-cells suggest that these proteins reflect the total number of functional insulin producing β-cells. Additionally, β-cell subpopulations may be identified which are positive for TMEM27, BACE2 or insulin only. Thus, the cumulative assessment of all three markers may provide further information about the real β-cell number per islet

    Tracking the origin of simultaneous endometrial and ovarian cancer by next-generation sequencing - a case report

    Get PDF
    BACKGROUND: Endometrioid adenocarcinoma of the uterus and ovarian endometrioid carcinoma share many morphological and molecular features. Differentiation between simultaneous primary carcinomas and ovarian metastases of an endometrial cancer may be very challenging but is essential for prognostic and therapeutic considerations. CASE PRESENTATION: In the present case study of a 33 year-old patient we used targeted amplicon next-generation re-sequencing for clarifying the origin of synchronous endometrioid cancer of the corpus uteri and the left ovary. The patient developed a metachronous lung metastasis of an endometrioid adenocarcinoma four years after hyster- and adnexectomy, vaginal brachytherapy and treatment with the synthetic steroid tibolone. Removal of the metastasis and megestrol treatment for seven years led to a complete remission. A total of 409 genes from the Ampliseq Comprehensive Cancer Panel (Ion Torrent, Thermo Fisher) were analysed by next generation sequencing and mutations in 10 genes, including ARID1A, CTNNB1, PIK3CA and PTEN were identified and confirmed by Sanger sequencing. Primary endometrial as well as ovarian cancer showed an identical mutational profile, suggesting the presence of an ovarian metastasis of the endometrial cancer, rather than a simultaneous endometrial and ovarian cancer. The metachronous lung metastasis showed a different mutational profile compared to the primary cancer. Immunohistochemical staining of the corresponding proteins suggested that the tumour development was driven by alterations in the protein function rather than by changes of the protein abundance in the cell. CONCLUSIONS: Our results have demonstrated next generation sequencing as a valuable tool in the differentiation of synchronous primary tumours and metastases, which has an important impact on the clinical decision making process. Similar to breast cancer, targeted therapies based on mutational tumour profiling will become increasingly important in endometrial and ovarian cancer. In summary, our results support the usage of next generation sequencing as a supplementary diagnostic tool, assisting in personalized precision medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3054-6) contains supplementary material, which is available to authorized users

    Melanoma patients with additional primary cancers: a single-center retrospective analysis

    Get PDF
    Recent progress in the diagnosis and treatment of primary and metastatic cutaneous melanoma (CM) has led to a significant increase in the patients` expectancy of life. The development of additional primary tumors (APT) other than CM represents an important survival issue. Of a total of 1764 CM patients, 80 (4.5%) patients developed APT. For tumors diagnosed after CM, there was a 2.7 fold excess risk for APT compared to the swiss german population. A significantly increased risk was noted for female breast (SIR, 2.46), male larynx (SIR, 76.92), male multiple myeloma (SIR, 11.2), male oesophagus (SIR, 10.8) and thyroid on males (SIR, 58.8) and females (SIR, 38.1). All thyroid cancer cases had a common papillary histological subtype and a high rate of BRAFV600E mutation. Melanoma was the primary cause of death in the vast majority of patients. We used the cancer registry from the Comprehensive Cancer Center Zurich (CCCZ) and retrospectively analyzed patients with CM and APT between 2008 and 2018. We calculated the risk of APT compared to the swiss german population using the standardized incidence ratio (SIR). Patients with CM have an increased risk for hematologic and solid APT. Long-term follow-up is indicated
    corecore