25 research outputs found

    Lifetime measurement of the 21 + state in 74Rb and isospin properties of quadrupole transition strengths at N = Z

    Get PDF
    Self-conjugate nuclei in the A≈70–80 region have attracted a great deal of attention due to phenomena such as shape coexistence and increasing collectivity along the N=Z line. We investigate the structure of nuclei in this region through lifetime measurements using the GRETINA array. The first implementation of the Differential Recoil Distance Doppler Shift technique with fast radioactive beams is demonstrated and verified through a measurement of the well-known B(E2;21 +→01 +) transition strength in 74Kr. The method is then applied to determine the B(E2;21 +→01 +) transition strength in 74Rb, the heaviest odd–odd N=Z nucleus for which this quantity has been determined. This result and extended systematics along N=Z suggest the dominance of the isoscalar part of the quadrupole transition strengths in self-conjugate nuclei, as well as the possible presence of shape coexistence in 74Rb

    Increased Malbranchea pulchella β-glucosidase production and its application in agroindustrial residue hydrolysis: A research based on experimental designs

    No full text
    β-Glucosidases are a limiting factor in the conversion of cellulose to glucose for the subsequent ethanol production. Here, β-glucosidase production by Malbranchea pulchella was optimized using Composite Central Designs and Response Surface Methodologies from a medium designed. The coefficient of determination (R2) was 0.9960, F-value was very high, and the lack of fit was found to be non-significant. This indicates a statistic valid and predictive result. M. pulchella enzymatic extract was successfully tested as an enzymatic cocktail in a mixture design using sugarcane bagasse, soybean hull and barley bagasse. We proved that the optimization of the β-glucosidase production and the application in hydrolysis using unexpansive biomass and agricultural wastes can be accomplished by means of statistical methodologies. The strategy presented here can be useful for the improvement of enzyme production and the hydrolysis process, arising as an alternative for bioeconomy

    Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    No full text
    Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations observed in the pathophysiology of PD

    BjussuSP-I: A new thrombin-like enzyme isolated from Bothrops jararacussu snake venom

    No full text
    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr = 61,000 under reducing conditions and pI similar to 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated scrine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca2+ and Mg2+). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against I I venom samples of Bothrops, I of Crotalus, and I of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDfNEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom. (C) 2007 Elsevier Inc. All rights reserved
    corecore