448 research outputs found

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Enhanced quasiparticle dynamics of quantum well states: the giant Rashba system BiTeI and topological insulators

    Full text link
    In the giant Rashba semiconductor BiTeI electronic surface scattering with Lorentzian linewidth is observed that shows a strong dependence on surface termination and surface potential shifts. A comparison with the topological insulator Bi2Se3 evidences that surface confined quantum well states are the origin of these processes. We notice an enhanced quasiparticle dynamics of these states with scattering rates that are comparable to polaronic systems in the collision dominated regime. The Eg symmetry of the Lorentzian scattering contribution is different from the chiral (RL) symmetry of the corresponding signal in the topological insulator although both systems have spin-split surface states.Comment: 6 pages, 5 figure

    The Josephson light-emitting diode

    Full text link
    We consider an optical quantum dot where an electron level and a hole level are coupled to respective superconducting leads. We find that electrons and holes recombine producing photons at discrete energies as well as a continuous tail. Further, the spectral lines directly probe the induced superconducting correlations on the dot. At energies close to the applied bias voltage eV, a parameter range exists, where radiation proceeds in pairwise emission of polarization correlated photons. At energies close to 2eV, emitted photons are associated with Cooper pair transfer and are reminiscent of Josephson radiation. We discuss how to probe the coherence of these photons in a SQUID geometry via single photon interference.Comment: Main text: 4 pages, 4 figures, Supplementary material: 8 pages, 4 figure

    On the Eigenvalue Density of Real and Complex Wishart Correlation Matrices

    Full text link
    Wishart correlation matrices are the standard model for the statistical analysis of time series. The ensemble averaged eigenvalue density is of considerable practical and theoretical interest. For complex time series and correlation matrices, the eigenvalue density is known exactly. In the real case, however, a fundamental mathematical obstacle made it forbidingly complicated to obtain exact results. We use the supersymmetry method to fully circumvent this problem. We present an exact formula for the eigenvalue density in the real case in terms of twofold integrals and finite sums.Comment: 4 pages, 2 figure

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure

    Correspondence between Andreev reflection and Klein tunneling in bipolar graphene

    Get PDF
    Andreev reflection at a superconductor and Klein tunneling through an n-p junction in graphene are two processes that couple electrons to holes -- the former through the superconducting pair potential Delta and the latter through the electrostatic potential U. We derive that the energy spectra in the two systems are identical, at low energies E<<Delta and for an antisymmetric potential profile U(-x,y)=-U(x,y). This correspondence implies that bipolar junctions in graphene may have zero density of states at the Fermi level and carry a current in equilibrium, analogously to superconducting Josephson junctions. It also implies that nonelectronic systems with the same band structure as graphene, such as honeycomb-lattice photonic crystals, can exhibit pseudo-superconducting behavior.Comment: 7 pages, 7 figures; much expanded version, with a revised title, test of the analytics by computer simulation, temperature dependence of the persistent current, and an appendix with details of the calculatio

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure
    • …
    corecore