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Correspondence between Andreev reflection and Klein tunneling in bipolar graphene
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The Andreev reflection at a superconductor and the Klein tunneling through an n-p junction in graphene are
two processes that couple electrons to holes—the former through the superconducting pair potential A and the
latter through the electrostatic potential U. We derive that the energy spectra in the two systems are identical
at low energies e<<A and for an antisymmetric potential profile U(—x,y)==U(x,y). This correspondence
implies that bipolar junctions in graphene may have zero density of states at the Fermi level and carry a current
in equilibrium, analogous to the superconducting Josephson junctions. It also implies that nonelectronic sys-
tems with the same band structure as graphene, such as honeycomb-lattice photonic crystals, can exhibit

pseudosuperconducting behavior.
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I. INTRODUCTION

Tunneling through an n-p junction in graphene is called
the Klein tunneling'= with reference to relativistic quantum
mechanics, where it represents the tunneling of a particle
into the Dirac sea of antiparticles.* The Klein tunneling in
graphene (see Fig. 1) is the tunneling of an electron from the
conduction band into hole states from the valence band—
which plays the role of the Dirac sea. Several recent
experiments®~’ have investigated this unusual coupling of
electronlike and holelike dynamics.

In the course of an analysis of these experiments, a curi-
ous similarity was noticed® between negative refraction®® at
an n-p junction and the Andreev retroreflection!® at the in-
terface between a normal metal (N) and a superconductor
(S). As illustrated in Figs. 2(a) and 2(b), the trajectories at an
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FIG. 1. (Color online) Conical band structure in graphene at two
sides of a potential step (height 2u, width d), forming an n-p junc-
tion. In equilibrium, all states below the Fermi level (indicated in
blue) are filled and all states above are empty. The Klein tunneling
is the interband tunneling of an electron from the conduction band
in the n region (blue ball at the right) into the valence band of the p
region (blue ball at the left). In this work, we show that the low-
energy excitation spectrum of a symmetric n-p junction is the same
as that of an NS junction, obtained by replacing the region x <0 by
a superconductor.
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n-p junction and at a normal-metal-superconductor (NS)
junction are related by mirroring x+—>—x at the interface
(taken at x=0). Here, we show that the similarity is not lim-
ited to classical trajectories, but it extends to the fully quan-
tum mechanical wave functions and energy spectra. This im-
plies that quantum effects associated with superconductivity,
such as the proximity effect and the Josephson effect, have
analogs in an n-p junction.

We have found a precise mapping between the Dirac
Hamiltonian!! of an n-p junction and the Dirac-
Bogoliubov—de Gennes Hamiltonian'? of an NS junction un-
der the condition that the electrostatic potential U in the n-p
junction is antisymmetric, U(-x,y)=-U(x,y), with respect
to the interface. The Fermi level is chosen at zero energy,
symmetrically between the n and p regions. Such a symmet-
ric n-p junction turns out to have the same excitation spec-
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FIG. 2. (Color online) Periodic orbits [panel (a)] in an n-p junc-
tion and [panel (b)] in a NS junction at £=0 in the case of an abrupt
interface. (Solid and dashed lines distinguish electronlike and hole-
like trajectories.) Negative refraction in the n-p junction maps onto
the Andreev retroreflection in the NS junction upon mirroring in the
interface at x=0. Destructive interference of the electronlike and
holelike segments of the periodic orbit suppresses the density of
states at the Fermi level. Panels (c) and (d) show alternative geom-
etries that exhibit a suppression of the local density of states in an
unbounded system.
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trum as an NS junction for excitation energies &€ small com-
pared to the superconducting gap A. After presenting the
mapping in its mathematical form, we consider the two ma-
jor physical implications: zero density of states at the Fermi
level and persistent current flow in equilibrium. A compari-
son with computer simulations of a tight-binding model of
graphene is presented at the end of the paper.

II. DERIVATION OF THE MAPPING

The correspondence between the Klein tunneling and the
Andreev reflection consists of a mapping of an eigenstate WV
of the Dirac Hamiltonian H of a symmetric n-p junction onto
electron and hole eigenstates W, and ¥, in the normal part
x>0 of the NS junction. The Dirac Hamiltonian is given (in
the valley-isotropic representation) by

H=v[(p+eA) o]® 75+ Uoy ® 7, (1)

with p=—ifi(d/dx,d/dy) the momentum operator in the x-y
plane of the graphene layer, A=Bxy the vector potential of a
perpendicular magnetic field B, and v the electron velocity.
The Pauli matrices o; and 7; act, respectively, on the sublat-
tice and valley degree of freedom (with o and 7, a 2 X2
unit matrix). We introduce the time-reversal operator 7=
—(o,® 7,)C, with C the operator of complex conjugation, and
the parity operator P=i(0,® 7)) R, with R the operator of
reflection (x+>-x). The key property of the Dirac Hamil-
tonian that we need, in order to map the symmetric n-p junc-
tion onto an NS junction, is the anticommutation relation,

TPH =- HTP, (2)

satisfied for any B when U(-x,y)=-U(x,y).

Starting from a solution H¥ =&V of the Dirac equation in
the n-p junction, we now construct an eigenstate in the NS
junction at the same eigenvalue & by means of the transfor-
mations

q’e(x7y) =\P(X,y), \Ph(x7y) =P‘I'(X,)’)~ (3)

According to Refs. 12 and 13, the electron and hole wave
functions W,, ¥, in the normal part of the NS junction
should satisfy

HY,=¢V, -THTV,=¢¥,, x>0, (4)

with a boundary condition at the NS interface that for |g
<A takes the form

\I,h(()’y) = l(o.x ® TO)\I}e(O’y) = P\I,e(o’y) . (5)

The proof of the mapping now follows by inspection. First,
Eq. (4) results directly from the transformation [Eq. (3)] with
the anticommutation relation [Eq. (2)]. Second, since W is
continuous at x=0, the boundary condition [Eq. (5)] is auto-
matically satisfied.

The applicability of the mapping extends to the crystallo-
graphic edges of the graphene layer in the following way:
The edges of the n-p junction are described by the boundary
condition W(r)=M(r)¥(r) for r at the edge.'*!> The map-
ping to an NS junction still holds, provided that M commutes
with P, which requires
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FIG. 3. Density of states in the n-p junction of Fig. 2(a), calcu-
lated from Eq. (7). The dotted line is the value in the isolated n and
p regions, which is energy independent for |g| < u. The density of
states vanishes at the Fermi level (£=0), according to Eq. (8).

(0, ® 1M (x,y) = M(= x,y)(0, ® 7). (6)

For example, an armchair edge parallel to the x axis (with
M « g, independent of x) satisfies the requirement [Eq. (6)],
but a zigzag edge parallel to the x axis (M o) does not. A
pair of zigzag edges at x= = W [with M(xW,y)=* 0, ® 7],
on the other hand, do satisfy the requirement [Eq. (6)]. An
infinite mass boundary condition [with M(xW,y)=*o,
® 7], likewise, satisfies this requirement.

III. SUPPRESSION OF THE DENSITY OF STATES

We have calculated the density of states p(g) by solving
the Dirac equation in the n-p junction of Fig. 2(a). The Fermi
level (taken at £=0) is separated from the Dirac point by the
energy *u in the n and p regions. We take an abrupt inter-
face (width d small compared to the Fermi wavelength N\,
=hv/u) and wide and long n and p regions (width W \p,
length L>W). The precise choice of boundary condition at
x=* W does not matter in this regime, as long as it preserves
the symmetry of the geometry.

The calculation for the bipolar junction follows step by
step the analogous calculation for the Josephson junction in
Ref. 16. The dispersion relation (smoothed over rapid oscil-
lations) is given by

R
£,(q) = 7TET(m + %)\J'l —(hvg/p)?*, el < u, (7)

with m=0, =1, +2,... the mode index and #g the momen-
tum parallel to the n-p interface. (The energy E;=Av/2W is
the Thouless energy, which is <u for W= \y.) The resulting
density of states p(g)=(4/m)2,,|de,,/dq|™" is plotted in Fig.
3. It vanishes linearly as

p(e) = polel/Ex (8)

for small |e|, with py=(2u/)(fiv)~? the density of states
(per unit area and including spin plus valley degeneracies) in
the separate n and p regions. This suppression of the density
of states at the Fermi level by a factor /E; is precisely
analogous to an NS junction, where the density of states is
suppressed by the superconducting proximity effect (com-
pare, for example, our Fig. 3 with Fig. 8 of Ref. 16). In
particular, the peaks in p(e) at s=7TET(m+%) are analogous
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FIG. 4. Persistent current through a ring containing an abrupt
n-p interface as a function of the magnetic flux through the ring.
The solid curve is for zero temperature 7=0, the dashed curve for
T=E7/4kg, and the dotted curve for T=E7/2kp.

to the de Gennes—Saint James resonances in Josephson
junctions.!”

In a semiclassical description, the suppression of the den-
sity of states in the n-p junction can be understood as de-
structive interference of the electronlike and holelike seg-
ments of a periodic orbit [solid and dashed lines in Fig. 2(a)].
At the Fermi level, the dynamical phase shift accumulated in
the n and p regions cancels, and what remains is a Berry
phase shift of 7 from the rotation of the pseudospin of a
Dirac fermion.'31?

IV. PERSISTENT CURRENT

If the n and p regions enclose a magnetic flux @, as in the
ring geometry of Fig. 4 (inset), then the Berry phase shift can
be compensated and the suppression of the density of states
can be eliminated. The resulting flux dependence of the
ground state energy E=A[° p(e)ede (with A the joint area
of the n and p regions) implies that a current I=dE/d® will
flow through the ring in equilibrium at zero temperature, as
in a Josephson junction.”’ According to Eq. (8), the order of
magnitude,

Iy = (e/h)E3 8= (e/h)NEr, 9)

of this persistent current is set by the level spacing &
=(Apy)~" and by the Thouless energy E;=fv/mr=Né& in the
ring geometry (of radius r and width w<r, supporting N
=4uw/whv>1 propagating modes). Because of the macro-
scopic suppression of the density of states, this is a macro-
scopic current—Ilarger by a factor N than the mesoscopic
persistent current in a ballistic metal ring.2%?!

We have calculated I(®) for a simple model of an abrupt
n-p junction in an N-mode ring without intermode scattering,
neglecting the effect of the curvature of the ring on the spec-
trum and also assuming that the magnetic field is confined to
the interior of the ring. (These approximations are reasonable
for A\p<<w<r.) The slowly converging, oscillatory integral
over p(g) was converted into a rapidly decaying sum over
the Matsubara frequencies by the method of Ref. 22. The
zero-temperature result is plotted in Fig. 4 (solid curve). The
maximal persistent current is I,=~0.2[,. This is the same
value, up to a numerical coefficient, as the critical current of
a ballistic Josephson junction.?> We have also included the
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FIG. 5. (Color online) Same as Fig. 3 but now calculated from a
tight-binding model of graphene (lattice constant a, W/a=400). The
colors distinguish different values of A and d, corresponding to an
abrupt interface (\p/a=65, d/a=12), a smooth interface (\;/a
=12, d/a=12), and an atomically sharp interface (\p/a=12, d/a
=1). The suppression of the density of states vanishes if the reflec-
tion symmetry is broken by displacing the interface (yellow curve,
Nr/a=65, d/a=12, displacement=65a).

results at finite temperature, showing the decay when the
thermal energy kpT=ET.

V. HOW TO OBSERVE PSEUDOSUPERCONDUCTIVITY

To test our analytical predictions against a computer
simulation, we have numerically solved a tight-binding
Hamiltonian on a honeycomb lattice (lattice constant a). We
took a symmetric n-p junction with zigzag boundaries at x
==+ W (with W/a=400) and calculated the density of states
p(e), smoothed by a Lorentzian (width of 0.01E;) to elimi-
nate the rapid oscillations. Results are shown in Fig. 5 for
different Fermi wavelengths Np=hv/u and widths d of the
n-p interface [potential profile U(x)=—u tanh(4x/d)]. A clear
suppression of p(e) is observed within an energy range Ej
from the Fermi level at €=0. The suppression is somewhat
smaller than predicted by Eq. (8) (black solid line), in par-
ticular, for d=a (red curve, when the Dirac equation no
longer applies) and for d =\ (blue curve, when the Klein
tunneling happens only near normal incidence?).

As expected, the suppression is sensitive to perturbations
of the reflection symmetry. For example, as shown in Fig. 5
(yellow curve), a displacement of the n-p interface by \p
spoils the systematic destructive interference due to the
Berry phase and thus eliminates the suppression of the global
density of states.

We would still expect an effect on the local density of
states if we could confine the carriers to the n-p interface.
This might be achieved by means of the saddle point poten-
tial U= sgn(xy) of Fig. 2(c) or by means of the nonuniform
magnetic field B=Byx of Fig. 2(d). Destructive interference
of the periodic orbits in each of these unbounded geometries
will suppress the local density of states near the interface by
the same mechanism as in the confined geometry of Fig.
2(a). Because of disorder, the suppression will be limited to a
mean free path or corrugation length from the n-p interface.
Since the predicted suppression of the density of states at the
Fermi level happens at a large energy separation u from the
Dirac point (see Fig. 1), it should be distinguishable in a
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local measurement (for example, by a tunneling probe) from
any features associated with the conical singularity in the
band structure at the Dirac point.

From a different perspective, the correspondence derived
here offers the intriguing opportunity to observe supercon-
ducting analogies in nonelectronic systems governed by the
same Dirac equation as graphene. An example would be a
two-dimensional photonic crystal on a honeycomb or trian-
gular lattice,>*? in which the analog of an n-p junction has
been proposed recently.?® The detrimental effects of disorder
should be relatively easy to avoid in such a metamaterial.
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APPENDIX: CALCULATION OF THE PERSISTENT
CURRENT AND COMPARISON WITH SUPERCURRENT

In this appendix, we present the calculation leading to the
persistent current through the bipolar junction plotted in Fig.
4. We follow closely the analogous calculation for the super-
current through a Josephson junction of Ref. 22 and compare
the two systems at the end. For the sake of this comparison,
it is convenient to work with the density of states p
=(A/2)p per spin direction, integrated over the area A of the
system. We will likewise, in this appendix, count the number

of propagating modes N=N/2 per spin direction.

1. Persistent current

The persistent current /=dF/d® at temperature 7' is given
by the derivative of the free energy F with respect to the flux
® enclosed by the ring containing the n-p junction. This can
be expressed as an integral over the density of states,

d o0
I==2ksT o f dep(e)In[2 cosh(e/2ksT)]. (A1)

We have set the Fermi energy at zero and used the electron-
hole symmetry p(e)=p(—¢). The factor of 2 in front accounts
for the two spin directions (which are not counted separately
in p).

Since the spectrum of the ring is discrete, the density of
states p(e)==;8(e—¢;) consists of delta functions at the so-
lutions of the equation

Fle)= 7:0(8)1__[ (e-g)=0. (A2)

(The index i counts spin-degenerate levels once.) The func-
tion F, is >0 and even in & but can otherwise be freely
chosen. The density of states is then written as

1d
ple) =— —— Im In F(e + i0*), (A3)
mde

with 0* a positive infinitesimal.
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Substitution of Eq. (A3) into Eq. (A1) gives, using again
the electron-hole symmetry,
2kpT d [*+0"

d
I= e de In[2 cosh(s/ZkBT)]E In F(e).

(Ad)

The expression for the persistent current becomes, upon par-
tial integration,

1 d [=+o0"

I=——
mid®J_.,

de tanh(e/2kgT)In Fle).  (A5)

We close the contour in the upper half of the complex plane.
We assume that F is chosen such that In F has no singulari-
ties for Im & > 0. The only poles of the integrand in Eq. (A5)
then come from the hyperbolic tangent, at the Matsubara
frequencies, iw,=(2n+1)imkzT. Summing over the residues,
we arrive at the expression®?

d o0
[=—4k,T— 1 ] . A
kg dCDE n Fliw,) (A6)

n=0

In our model of an N-mode ring without intermode scat-
tering, we can calculate separately the contribution to / from
each propagating mode, with transverse momentum g¢,,. The
total current is then a sum over these contributions,

N o0

d
I=—4kBT2 _2 In f(iwn’qm)'

(A7)
m=1 ao n=0

The function F(e,q), which determines the energy levels in
the bipolar junction for a given transverse mode, is the limit
A— o0 of the analogous function in a Josephson junction.'3
We find

2_ 24 (hoa)
Fle,q) = AmLELL LS (2UCI) sin 6, sin 6_
0,0 E>
+ cos 6, cos 6_+ cos(ed/h), (A8)
0. =E;'\(u * )= (fivg)’. (A9)
Substituting into Eq. (A7) gives the persistent current,
e Vo 1
[=4kgT— sin(e®/h) D, D ————.  (A10)
? h m=1 n=0 f(lwn’Qm)

We wish to evaluate the expression [Eq. (A10)] in the
regime u>Er, N> 1. The sum over modes may be replaced
by an integral, according to Ezmv:l —(N/ kp)f {‘)qu, with kp
=u/fiv the Fermi wave vector. Since the sum over the Mat-
subara frequencies converges exponentially fast for w,=Er,
we can also assume p> w,. In this large-u regime, we may
approximate 6. =~ a=*i(),, with

a=(wEq[l —(q/kF)2:|”2, (A11)
Qn = (wn/ET)[l - (q/kF)z]_l/z'

The function F takes the form

(A12)
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FIG. 6. (Color online) Mapping of a bipolar ring containing two
n-p junctions (left panel) onto a Josephson ring containing two NS
junctions (right panels) by mirroring the holelike trajectories
(dashed) in the line through the interfaces. The persistent current /
through the bipolar ring at the left maps onto a supercurrent I
through a Josephson ring at the right. Because the enclosed flux ®
is halved by the mapping, the h/e periodicity of / maps onto an
h/2e periodicity of ;. The flux enclosed by the Josephson ring in
the upper right panel may be gauged away, with the introduction of
a phase difference ¢p=e® /% between the order parameters at the
two NS interfaces (lower right panel).

Fliw,,q) =X cos> a+ Y sin® a, (A13)

X = Z sinh? Q,, + cosh? ,, + cos(e®/h), (A14)

Y = Z cosh® Q,, + sinh? Q,, + cos(e®/%), (A15)
24 (hvg)* + @ 1+ (glkg)?

_ pwr(vg) e, 1+ (qlkp) (A16)

T = (hwg) + (ExQ,)* 1= (q/kp)

The phase « varies rapidly as a function of g, so we
average 1/F first over this phase,

1 T da I 1
—— | == ——=1/—=. (A17)
F o 2mXcos®a+Ysin®«a XY

We substitute Eq. (A17) into Eq. (A10) and evaluate it
numerically to arrive at the curves of I versus @ shown in
Fig. 4.

2. Comparison with supercurrent

The mapping between bipolar junctions and Josephson
junctions is illustrated in Fig. 6. Instead of a ring geometry,
we may equivalently consider a planar superconductor—
normal-metal-superconductor (SNS) junction, with a phase
difference ¢ between the two superconducting reservoirs. In
the absence of mode mixing, the two geometries carry the
same supercurrent /; at the same number of transverse modes

N. (The Thouless energy in the SNS junction is Ey=hv/L,
with L the separation of the two NS interfaces.)

The supercurrent [; through the Josephson junction is
given by?’
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FIG. 7. Supercurrent through a ballistic Josephson junction as a
function of the phase difference ¢ between the two superconducting
reservoirs, calculated from Eq. (A20). The solid curve is for zero
temperature 7=0, the dashed curve for T=E;/4kp, and the dotted
curve for T=Ey/2kg. The difference with the analogous result for a
bipolar junction in Fig. 4 arises because this figure is for equal
Fermi energy ug=p in superconductor and normal metal, while
Fig. 4 maps onto a Josephson junction with wg> u.

= 1 I & €)1n 0S s
J B h , E 0 J B

(A18)

with ¢ the phase difference across the junction and p; the
density of states per spin direction. The mapping relates
¢ e®/h (see Fig. 6) and p;« p. Comparison of Egs. (Al)
and (A18) then shows that /,(¢) < I(®). The bipolar junction
and the Josephson junction therefore carry the same current
in equilibrium.

The result in the literature?®=32 for a ballistic SNS junction
is a piecewise linear dependence of I; on ¢ at zero tempera-
ture, close to but not identical to the solid curve in Fig. 4. As
we will now show, the difference is due to the presence or
the absence of a step in the Fermi energy at the NS inter-
faces.

On the one hand, the mapping between bipolar and the
Josephson junctions relies on the boundary condition [Eq.
(5)] at the NS interface, which assumes that the Fermi energy
Mg in the superconductor is much larger than the value w in
the normal region.!® On the other hand, Refs. 28-32 assume
us=pm. The function F(e,q) is then given by

Fle,q) =cos(6,— 0_) + cos ¢, (A19)
resulting in
e Vo sin ¢
1 =4kzT— . (A20
/9) 5 hmzzl ,% cosh 2Q),(g,,) + cos ¢ (A20)

The resulting supercurrent is plotted in Fig. 7 for different
temperatures.

At T=0, the sum over n reduces to an integral, Zfzo
— (2mkgT)™! [{dw, which evaluates to
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* sin ¢

N
I(¢) = MTE [1 = (gu/kp)]" f do
m=1

Th o cosh2w+cos ¢

N
BT 1= gk,

e | < 7.
Wﬁ m=1

= (A21)

(The ¢ dependence is repeated periodically outside of the
interval —m < ¢p<.) We thus recover the piecewise linear ¢
dependence of the supercurrent.”8-32

For N> 1, Ehe sum over modes may also be evaluated as
an integral, =N_ — (N/kp) S Squ, with the result

eﬁET
ah ’

|p| < . (A22)

IJ(¢) =¢

The critical current I.=meNE;/4fi=(m/8)I, is about two
times larger than the maximal persistent current /.~0.21,
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found in the bipolar junction because of the absence of a step
in the Fermi energy at the NS interfaces.

Equation (A22) holds in a two-dimensional geometry. In
three dimensions, the sum over modes becomes =N_

—(2N/ k,zp) I ’(‘)quq, resulting in

ZeﬁET

— A2
Sy (A23)

I(p)=¢ ¢ <,
in agreement with Refs. 29 and 30. (The numerical coeffi-
cient in Ref. 28 is different.) In the one-dimensional case,

N=1 of a single spin-degenerate mode (group velocity
Varoup=0[1—(q1/kp)?]""?), we find instead
ev rou
I(d) = p—=7F,
L

|p <, (A24)

in agreement with Ref. 31 (up to a factor of 2, presumably
because Ref. 31 does not account for the spin degeneracy of
the mode).
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