1,276 research outputs found

    Site-centered impurities in quantum spin chains

    Full text link
    The magnetic behavior of antiferromagnetic spin 1/2 chains with site-centered impurities in a magnetic field is investigated. The effect of impurities is implemented by considering different situations of both diagonal and off-diagonal disorder. The resulting magnetization curves present a wide variety of plateaux, whose position strongly depends on the kind of disorder considered. The relevance of these results to experimental situations is also discussed.Comment: 6 pages, 6 figure

    Conserving many body approach to the fully screened, infinite U Anderson model

    Full text link
    Using a Luttinger Ward scheme for interacting gauge particles, we present a conserving many body treatment of a family of fully screened infinite U Anderson models that has a smooth cross-over into the Fermi liquid state, with a finite scattering phase shift at zero temperature and a Wilson ratio greater than one. We illustrate our method, computing the temperature dependence of the thermodynamics, resistivity and electron dephasing rate and discuss its future application to non-equilibrium quantum dots and quantum critical mixed valent systems

    Chaining of welding and finish turning simulations for austenitic stainless steel components

    Get PDF
    The chaining of manufacturing processes is a major issue for industrials who want to understand and control the quality of their products in order to ensure their in-service integrity (surface integrity, residual stresses, microstructure, metallurgical changes, distortions,…). Historically, welding and machining are among the most studied processes and dedicated approaches of simulation have been developed to provide reliable and relevant results in an industrial context with safety requirements. As the simulation of these two processes seems to be at an operationnal level, the virtual chaining of both must now be applied with a lifetime prediction prospect. This paper will first present a robust method to simulate multipass welding processes that has been validated through an international round robin. Then the dedicated “hybrid method”, specifically set up to simulate finish turning, will be subsequently applied to the welding simulation so as to reproduce the final state of the pipe manufacturing and its interaction with previous operations. Final residual stress fields will be presented and compared to intermediary results obtained after welding. The influence of each step on the final results will be highlighted regarding surface integrity and finally ongoing validation works and numerical modeling enhancements will be discussed

    Schwinger Boson approach to the fully screened Kondo model

    Full text link
    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a non-trivial Wilson ratio. When applied to the two impurity model, the mean-field theory describes the "Varma Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.Comment: 4 pages, 4 figures. Changes to references and text in v

    Additives incorporated into urea to reduce nitrogen losses after application to the soil.

    Get PDF
    The objective of this work was to develop urea-based fertilizers with internal incorporation of urease inhibitors and other additives in the granule. The effects of the incorporation of NBPT, copper (Cu+2), boric acid (H3BO3), elemental sulphur (Sº), and a clay mineral from the zeolite group in powder urea - with ten different combinations of these additives - were evaluated as to N losses by volatilization and leaching. The losses in laboratory-developed formulations were compared with those of commercial fertilizers coated with the same additives (Super N, FH Nitro Mais, and FH Nitro Gold). The evaluations were made in greenhouse conditions, using a Ultisol accommodated in PVC columns. Nitrate and ammonium leaching was evaluated in the solution percolated through the soil columns. Ammonia volatilization was measured with a semi-open static chamber. The incorporation of urease inhibitors (NBPT, H3BO3, and Cu+2) into the urea granules was efficient to reduce N volatilization. Ammonia volatilization in the laboratory-developed ureas was lower than in commercial fertilizers coated with the same additives, while ammonium sulfate losses by leaching were similar. The addition of zeolite does not reduce N volatilization. Mineral N leaching in the soil profile is not affected by urease inhibitors.Título em português: Aditivos incorporados à ureia para reduzir perdas de nitrogênio após aplicação ao solo

    Sum Rules and Ward Identities in the Kondo Lattice

    Full text link
    We derive a generalized Luttinger-Ward expression for the Free energy of a many body system involving a constrained Hilbert space. In the large NN limit, we are able to explicity write the entropy as a functional of the Green's functions. Using this method we obtain a Luttinger sum rule for the Kondo lattice. One of the fascinating aspects of the sum rule, is that it contains two components, one describing the heavy electron Fermi surface, the other, a sea of oppositely charged, spinless fermions. In the heavy electron state, this sea of spinless fermions is completely filled and the electron Fermi surface expands by one electron per unit cell to compensate the positively charged background, forming a ``large'' Fermi surface. Arbitrarily weak magnetism causes the spinless Fermi sea to annihilate with part of the Fermi sea of the conduction electrons, leading to a small Fermi surface. Our results thus enable us to show that the Fermi surface volume contracts from a large, to a small volume at a quantum critical point. However, the sum rules also permit the possible formation of a new phase, sandwiched between the antiferromagnet and the heavy electron phase, where the charged spinless fermions develop a true Fermi surface.Comment: 24 pages, 4 figures. Version two contains a proof of the "Entropy formula" which connects the entropy directly to the Green's functions. Version three contains corrections to typos and a more extensive discussion of the physics at finite

    Investigation of the machining process of spheroidal cast iron using cubic boron nitride (CBN) tools

    Get PDF
    This paper presents the experimental results of the turning of spheroidal iron (EN-GJS-500-7 grade) using L-CBN tools. The cutting process can be classified as a High Performance Cutting (HPC) due to a relatively high material removal rate of about 190 cm3/min. The investigations performed include fundamental process quantities and machined surface characteristics, i.e. componential cutting forces, specific cutting energy, average and maximum values of cutting temperature as well as temperature distribution in the cutting zone, tool wear progress visualized by appropriate wear curves and 2D/3D surface roughness parameters

    Protein families, natural history and biotechnological aspects of spider silk.

    Get PDF
    Spiders are exceptionally diverse and abundant organisms in terrestrial ecosystems and their evolutionary success is certainly related to their capacity to produce different types of silks during their life cycle, making a specialized use on each of them. Presenting particularly tandemly arranged amino acid repeats, silk proteins (spidroins) have mechanical properties superior to most synthetic or natural high-performance fibers, which makes them very promising for biotechnology industry, with putative applications in the production of new biomaterials. During the evolution of spider species, complex behaviors of web production and usage have been coupled with anatomical specialization of spinning glands. Spiders retaining ancestral characters, such as the ones belonging to the Mygalomorph group, present simpler sorts of webs used mainly to build burrows and egg sacs, and their silks are produced by globular undifferentiated spinning glands. In contrast, Araneomorphae spiders have a complex spinning apparatus, presenting up to seven morphologically distinct glands, capable to of rigidness and elasticity associated with distinct behaviors. Aiming to provide a discussion involving a number of spider silks? biological aspects, in this review we present descriptions of members from each family of spidroin identified from five spider species of the Brazilian biodiversity, and an evolutionary study of them in correlation with the anatomical specialization of glands and spider?s spinning behaviors. Due to the biotechnological importance of spider silks for the production of new biomaterials, we also discuss about the new possible technical and biomedical applications of spider silks and the current status of it
    corecore