267 research outputs found

    Galactic Winds in Irregular Starburst Galaxies

    Full text link
    In this paper we present some results concerning the study of the development of galactic winds in blue compact galaxies. In particular, we model a situation very similar to that of the galaxy IZw18, the most metal poor and unevolved galaxy known locally. To do that we compute the chemo-dynamical evolution of a galaxy in the case of one istantaneous isolated starburst as well as in the case of two successive instantaneous starbursts. We show that in both cases a metal enriched wind develops and that the metals produced by the type Ia SNe are lost more efficiently than those produced by type II SNe. We also find that one single burst is able to enrich chemically the surrounding region in few Myr. Both these results are the effect of the assumed efficiency of energy transfer from SNe to ISM and to the consideration of type Ia SNe in this kind of problem. The comparison with observed abundances of IZw18 suggests that this galaxy is likely to have suffered two bursts in its life, with the previous being less intense than the last one.Comment: 3 pages, 1 figure, to appear in the Proceedings of the Conference "Cosmic Evolution", Paris, November 200

    The fate of heavy elements in dwarf galaxies - the role of mass and geometry

    Full text link
    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies, due to their shallower potential wells, are assumed to be more vulnerable to this phenomenon. Metal loss through galactic winds is also commonly invoked to explain the low metal content of dwarf galaxies. Our main aim in this paper is to show that galactic mass cannot be the only parameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simulations of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to loose metals more easily than roundish ones. Consequently, also the final metallicities attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly produced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shallower potential wells) more easily develop large-scale outflows, therefore the fraction of lost metals tends to be higher.Comment: 13 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    The mass-metallicity relation of tidal dwarf galaxies

    Full text link
    Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been thought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.Comment: 7 pages, 3 figures, MNRAS accepte

    Non-isothermal filaments in equilibrium

    Full text link
    The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament changes in a non-isothermal configuration. We solve the hydrostatic equilibrium equation assuming temperature gradients similar to those derived from observations. We obtain a new set of equilibrium solutions for non-isothermal filaments with both linear and asymptotically constant temperature gradients. Our results show that, for sufficiently large internal temperature gradients, a non-isothermal filament could present significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own gravity. We conclude that filaments can reach an equilibrium configuration under non-isothermal conditions. Detailed studies of both the internal mass distribution and temperature gradients within filaments are then needed in order to judge the physical state of filaments.Comment: 5 pages, 2 figures, accepted for publication in A&

    Early evolution of Tidal Dwarf Galaxies

    Get PDF
    Our aim is to study the evolution of tidal dwarf galaxies. The first step is to understand whether a model galaxy without Dark Matter can sustain the feedback of the ongoing star formation. We present tests of the evolution of models in which star formation efficiency, temperature threshold, initial distribution of gas and infall are varied. We conclude that it is feasible to keep a fraction of gas bound for several hundreds of Myr and that the development of galactic winds does not necessarily stop continuous star formation.Comment: 2 pages, 1 figure, to appear in the Proceedings of the CRAL conference "Chemodynamics: from first stars to local galaxies", Lyon, France, 10-14 July 200
    • …
    corecore