62 research outputs found

    Neuropeptide content in pancreas and pituitary of obese and diabetes mutant mice: strain and sex differences.

    No full text
    The nature of the primary genetic defects in ob/ob and db/db mice are unknown. Both the obese (ob) and diabetes (db) mutations produce similar, multicomponent obese-hyperinsulinemic syndromes when maintained in the same strain of mouse. In an attempt to find differences between these mutations in neuroendocrine function affecting the islets of Langerhans or the pituitary, tissue content of four neuropeptides that are known to be capable of influencing the rate of insulin secretion was examined in obese (ob/ob) and diabetes (db/db) mice. In the first study, C57BL/6Job/ob and control males were studied at 3, 4, and 11 weeks of age. In the second study, db/db mice of both sexes and two inbred strains (C57BL/6J and C57BL/KsJ), which differ markedly in the severity of expression of the diabetes phenotype, were studied at 3 weeks of age, before the development of hyperglycemia and secondary consequences thereof. Immunoreactive peptides were measured in acetic acid extracts of pancreas and pituitary. No differences between male ob/ob and db/db mice of the C57BL/6J strain were found. Marked sex differences in lean control mice were found at 3 weeks of age in pancreatic Met-enkephalin-LI and galanin-LI (with two- to threefold higher content in males). Low pancreatic content (50% to 70% lower than in control mice) of galanin-LI, Met-enkephalin-LI and Leu-enkephalin-LI was associated with hyperinsulinemia in male B6 ob/ob and db/db mice at 3 weeks of age, though not in B6 db/db females and not in BKs db/db mice of either sex.(ABSTRACT TRUNCATED AT 250 WORDS

    Notes on Rudder Pedal-Force Characteristics

    No full text

    Reversal of Somatostatin Inhibition of Insulin and Glucagon Secretion

    No full text
    These studies were designed to elucidate the mechanism of inhibitory action of somatostatin (SRIF) on glucagon (IRG) and insulin (IRI) secretion. Studies were carried out in the unrecirculated isolated rat pancreas perfusion with arginine 19.2 mM and glucose 5.5 mM as stimulus primarily for IRG but also IRI secretion. The effects of excess Ca++ (15.2 mEq./L.) and excess K+ (12.8 mEq./L.) on IRG, IRI, and the SRIF-inhibited pancreas were studied. Ca++ excess in five perfusions strikingly stimulated IRG secretion (+92 per cent) but only stabilized IRI secretion compared with control perfusions. K+ excess (in seven perfusions) markedly inhibited IRG secretion (–39 per cent) while stimulating IRI secretion (+16 per cent). Restoration of normal concentrations of K+ resulted in a rebound of IRG to levels 120 per cent that of controls. SRIF, at concentrations from 0.1–20 ng./ml., produced inhibition of both IRG and IRI. In 11 perfusions, with SRIF at 10 ng./ml., IRG decreased more than IRI (–75.2 per cent IRG and –46.9 per cent IRI). In five perfusions, addition of Ca++ (15.2 mEq./L.) 10 minutes after SRIF was started resulted in a reversal of IRG inhibition to 69.4 per cent and IRI to 73.2 per cent of the arginine controls. The reversal by Ca++ of SRIF effect on IRG was greater at higher concentrations of Ca++, suggesting some form of competition. In four perfusions, excess K+ reversed SRIF-induced IRI inhibition to 79.6 per cent that of controls but had no effect on IRG inhibition. Studies in vitro with isolated islets revealed that SRIF (2 μg./ml.) inhibited 45Ca uptake of islets as did epinephrine (10−5 M). It was concluded that SRIF-induced inhibition of hormone release appears related to an action on Ca++ uptake.</jats:p
    • …
    corecore