87 research outputs found

    Singularity Free Inhomogeneous Models with Heat Flow

    Full text link
    We present a class of singularity free exact cosmological solutions of Einstein's equations describing a perfect fluid with heat flow. It is obtained as generalization of the Senovilla class [1] corresponding to incoherent radiation field. The spacetime is cylindrically symmetric and globally regular.Comment: 6 pages, TeX, to appear in Class.Quant.Gra

    Revisiting the confrontation of the energy conditions with supernovae data

    Full text link
    In the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to model the Universe the violation of the so-called energy conditions is related to some important properties of the Universe as, for example, the current and the inflationary accelerating expansion phases. The energy conditions are also necessary in the formulation and proofs of Hawking-Penrose singularity theorems. In two recent articles we have derived bounds from energy conditions and made confrontations of these bounds with supernovae data. Here, we extend these results in following way: first, by using our most recent statistical procedure for calculating new q(z) estimates from the \emph{gold} and \emph{combined} type Ia supernovae samples; second, we use these estimates to obtain a new picture of the energy conditions fulfillment and violation for the recent past (z1z\leq 1 ) in the context of the standard cosmology.Comment: 5 pages. To appear in Int. J. Mod. Phys. D. Talk presented at the 3rd International Workshop on Astronomy and Relativistic Astrophysics. V2: typos correcte

    Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology

    Full text link
    Although the observed universe appears to be geometrically flat, it could have one of 18 global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others. This global topology of the universe imposes boundary conditions on quantum fields and affects the vacuum energy density via Casimir effect. In a spacetime with such a nontrivial topology, the vacuum energy density is shifted from its value in a simply-connected spacetime. In this paper, the vacuum expectation value of the stress-energy tensor for a massless scalar field is calculated in all 17 multiply-connected, flat and homogeneous spacetimes with different global topologies. It is found that the vacuum energy density is lowered relative to the Minkowski vacuum level in all spacetimes and that the stress-energy tensor becomes position-dependent in spacetimes that involve reflections and rotations.Comment: 25 pages, 11 figure

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    Probing time orientability of spacetime

    Full text link
    In general relativity, cosmology and quantum field theory, spacetime is assumed to be an orientable manifold endowed with a Lorentz metric that makes it spatially and temporally orientable. The question as to whether the laws of physics require these orientability assumptions is ultimately of observational or experimental nature, or the answer might come from a fundamental theory of physics. The possibility that spacetime is time non-orientable lacks investigation, and so should not be dismissed straightaway. In this paper, we argue that it is possible to locally access a putative time non-orientability of Minkowski empty spacetime by physical effects involving quantum vacuum electromagnetic fluctuations. We set ourselves to study the influence of time non-orientability on the stochastic motions of a charged particle subject to these electromagnetic fluctuations in Minkowski spacetime equipped with a time non-orientable topology and with its time orientable counterpart. To this end, we introduce and derive analytic expressions for a statistical time orientability indicator. Then we show that it is possible to pinpoint the time non-orientable topology through an inversion pattern displayed by the corresponding orientability indicator, which is absent when the underlying manifold is time orientable.Comment: 21 pages, 3 figure

    On limits of spacetimes -- a coordinate-free approach

    Full text link
    A coordinate-free approach to limits of spacetimes is developed. The limits of the Schwarzschild metric as the mass parameter tends to 0 or \infty are studied, extending previous results. Besides the known Petrov type D and 0 limits, three vacuum plane-wave solutions of Petrov type N are found to be limits of the Schwarzschild spacetime.Comment: 19 p

    A deformation of AdS_5 x S^5

    Full text link
    We analyse a one parameter family of supersymmetric solutions of type IIB supergravity that includes AdS_5 x S^5. For small values of the parameter the solutions are causally well-behaved, but beyond a critical value closed timelike curves (CTC's) appear. The solutions are holographically dual to N=4 supersymmetric Yang-Mills theory on a non-conformally flat background with non-vanishing R-currents. We compute the holographic energy-momentum tensor for the spacetime and show that it remains finite even when the CTC's appear. The solutions, as well as the uplift of some recently discovered AdS_5 black hole solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde

    Non-Gaussianity from isocurvature perturbations

    Full text link
    We develop a formalism to study non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the CMB temperature fluctuations, which may be confirmed in future experiments, or possibly, even in the currently available observational data. As an explicit example, we consider the QCD axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H_{inf} = O(10^9 - 10^{11})GeV.Comment: 24 pages, 6 figures; references added; version to appear in JCA

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice
    corecore