40 research outputs found

    Ecology and stable isotope geochemistry of modern planktonic foraminifera in the Northeast Atlantic

    Get PDF
    The understanding of the relationship between planktonic foraminifera and their surrounding environment, as well as each individual speciesa habitat and calcification behaviour are of fundamental importance to improve their use as a paleoceanographic tool. To this end, vertically stratified plankton tow hauls were used to study the vertical and horizontal distribution and stable isotope geochemistry of planktonic foraminifera in the eastern North Atlantic, a region that plays an important role in monitoring changes in the North Atlantic circulation and where the environmental conditions are particularly diverse. This work provides new insights into the vertical and horizontal distribution of individual species of planktonic foraminifera and the respective factors (temperature, chlorophyll, mixed layer depth, lunar/seasonal cycle) potentially controlling their distribution. New findings concerning the stable isotope signal recorded in the shells of four deep dwelling planktonic foraminifera species are also reported. The vertical distribution of planktonic foraminifera varied among species, allowing us to identify different groups of species, such as species living typically above 100 m, species occurring commonly between the surface (50 m) and intermediate waters (100 m) and species living mostly below 100 m. In most cases, the vertical habitat also varied within species, but the variation was found to be predictable by a combination of environmental factors and ontogenetic migration. Horizontally, species distribution is linked to the surrounding environmental conditions, resulting in specific regional and seasonal faunal associations. Unlike the composition of sedimentary assemblages, plankton assemblages are predicted by multiple environmental parameters, indicating that the strong temperature signal in fossil assemblages is the result of seasonal and interannual accumulation and averaging. The stable isotopic analysis of four deep-dwelling species confirmed that either larger size or presence of a secondary crust cause heavier isotopic signal. In three out of the four studied species, the oxygen isotopic signal could be better predicted by the Shackleton paleotemperature, whereas Globorotalia scitula signal is better described by the Kim and Oa Neil paleotemperature equation. Finally, we found inconsistencies between the living depth and the calcification depth of each species, revealing that the calcification depth does not correspond entirely to the habitat depth of a species

    Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows

    Get PDF
    Stable oxygen isotopes (delta O-18) of planktonic foraminifera are one of the most used tools to reconstruct environmental conditions of the water column. Since different species live and calcify at different depths in the water column, the delta O-18 of sedimentary foraminifera reflects to a large degree the vertical habitat and interspecies delta O-18 differences and can thus potentially provide information on the vertical structure of the water column. However, to fully unlock the potential of foraminifera as recorders of past surface water properties, it is necessary to understand how and under what conditions the environmental signal is incorporated into the calcite shells of individual species. Deep-dwelling species play a particularly important role in this context since their calcification depth reaches below the surface mixed layer. Here we report delta O-18 measurements made on four deep-dwelling Globorotalia species collected with stratified plankton tows in the eastern North Atlantic. Size and crust effects on the delta O-18 signal were evaluated showing that a larger size increases the delta O-18 of G. inflata and G. hirsuta, and a crust effect is reflected in a higher delta O-18 signal in G. truncatulinoides. The great majority of the delta O-18 values can be explained without invoking disequilibrium calcification. When interpreted in this way the data imply depth-integrated calcification with progressive addition of calcite with depth to about 300m for G. inflata and to about 500m for G. hirsuta. In G. scitula, despite a strong subsurface maximum in abundance, the vertical delta O-18 profile is flat and appears dominated by a surface layer signal. In G. truncatulinoides, the delta O-18 profile follows equilibrium for each depth, implying a constant habitat during growth at each depth layer. The delta O-18 values are more consistent with the predictions of the Shackleton (1974) palaeotemperature equation, except in G. scitula which shows values more consistent with the Kim and O'Neil (1997) prediction. In all cases, we observe a difference between the level where most of the specimens were present and the depth where most of their shell appears to calcify.Agência financiadora Portuguese Foundation for Science and Technology (FCT): SFRH/BD/78016/2011; UID/Multi/04326/2019 European Union Seventh Framework Programme (FP7/2007-2013): 228344-EUROFLEETS German Research Foundation (DFG): WA2175/2-1; WA2175/4-1 German Climate Modelling consortium PalMod - German Federal Ministry of Education and Research (BMBF)info:eu-repo/semantics/publishedVersio

    The nature of opal burial in the equatorial atlantic during the deglaciation

    Get PDF
    Relatively high opal concentrations are measured in equatorial Atlantic sediments from the most recent deglaciation. To shed light on their causes, seven cores were analyzed for their content of siliceous (diatom, silicoflagellates, radiolarians, phytoliths, and sponge spicules) and calcareous (coccolithophores) microfossils. An early deglacial signal is detected at the time of rising boreal summer insolation ca. 18 ka by the coccolithophores. The surface freshening is likely due to the rain belt associated with the intertropical convergence zone (ITCZ), implying its southward shift relatively to its present-day average positioning. The diatom assemblages corresponding to the following increase in diatom abundances ca. 15.5 ka suggest the formation of a cold tongue of upwelled water associated with tropical instability waves propagating westward. Such conditions occur at present during boreal summer, when southerly trade winds are intensified, and the ITCZ shifts northward. The presence of the diatom Ethmodiscus rex (Wallich) Hendey and the coccolithophore Florisphera profunda indicates a deep thermocline and nutrient enrichment of the lower photic zone, revealing that Si-rich southern sourced water (SSW) likely contributed to enhanced primary productivity during this time interval. The discrepancies between the maximum opal concentrations and siliceous marine microfossils records evidence the contribution of freshwater diatoms and phytoliths, indicative of other processes. The definition of the nature of the opal record suggests successive productivity conditions associated with specific atmospheric settings determining the latitudinal ITCZ positioning and the development of oceanic processes; and major oceanic circulation changes permitting the contribution of SSW to marine productivity at this latitude.LA/P/0101/2020info:eu-repo/semantics/publishedVersio

    Data report: IODP Site U1387: the revised splice between Sections U1387B-18X-3 and U1387C-8R-3 (>171.6 mcd)

    Get PDF
    The Expedition 339 shipboard splice of Integrated Ocean Drilling Program (IODP) Site U1387 deeper than ~155 meters composite depth (mcd) is based on a composite of the magnetic susceptibility and natural gamma radiation data. When generating high-resolution paleoceanographic reconstructions for the Mid-Pleistocene Transition and early Pleistocene sections of Site U1387, it quickly became obvious that proxy data misfits existed at several splice transitions. Thus, a revised splice was generated for Site U1387 below Core 339-U1387B-18X based on X-ray fluorescence– derived element records (e.g., ln[Fe/Ca]) and the stable isotope records obtained for planktonic and benthic foraminifers. Corrections were needed at most of the splice transitions below Core 339-U1387A-19X, with adjustments ranging from a few centimeters to several meters. In addition, Core 339-U1387A-33X and sections of Core 36X were integrated into the revised splice to replace Core 339-U1387C-2R and sections of Core 5R, respectively. The replacement of Core 339-U1387C-2R with Core 339-U1387A33X is an option for the intended paleoceanographic research and not essential for lower resolution studies. The splice tie point table, therefore, also includes an option for a splice that retains Core 339-U1387C-2R. The extensive revision of the shipboard splice reveals that making a splice for sediment sequences rich in contourite layers and coring disturbances (biscuiting in the extended core barrel cores) can be tricky and that data misfits at splice transitions are not necessarily a data problem but could indicate a splice problem.SFRH/BPD/111433/2015info:eu-repo/semantics/publishedVersio

    Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020-1135 ka)

    Get PDF
    Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic delta O-18 signal follows obliquity with the exception of an additional, smaller delta O-18 peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3.A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (<12 degrees C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes. (C) 2015 Elsevier B.V. All rights reserved.Fundação para a Ciência e a Tecnologia (FCT; Portugal) through MOWCADYN project [PTDC/MAR-PRO/3761/2012]; FCT [SFRH/BPD/66025/2009]; Deutsche Forschungsgemeinschaft (DFG) [BA 3809/4, RO 1113/6]; MARUM Research Center; Spanish Ministry of Science and Innovation [CTM 2011-24079]; European Union [228344-EUROFLEETS]info:eu-repo/semantics/publishedVersio
    corecore