7 research outputs found

    A call to leverage a health equity lens to accelerate human neuroscience research

    Get PDF
    Investigation of health inequities tend to be examined, in human neurosciences, as biological factors at the level of the individual. In actuality, health inequities arise, due largely in part, to deep-seated structural factors. Structural inequality refers to the systemic disadvantage of one social group compared to others with whom they coexist. The term encompasses policy, law, governance, and culture and relates to race, ethnicity, gender or gender identity, class, sexual orientation, and other domains. These structural inequalities include but are not limited to social segregation, the intergenerational effects of colonialism and the consequent distribution of power and privilege. Principles to address inequities influenced by structural factors are increasingly prevalent in a subfield of the neurosciences, i.e., cultural neurosciences. Cultural neuroscience articulates the bidirectional relationship between biology and environmental contextual factors surrounding research participants. However, the operationalization of these principles may not have the intended spillover effect on the majority of human neurosciences: this limitation is the overarching focus of the present piece. Here, we provide our perspective that these principles are missing and very much needed in all human neuroscience subdisciplines to accelerate our understanding of the human brain. Furthermore, we provide an outline of two key tenets of a health equity lens necessary for achieving research equity in human neurosciences: the social determinants of health (SDoH) framework and how to deal with confounders using counterfactual thinking. We argue that these tenets should be prioritized across future human neuroscience research more generally, and doing so is a pathway to further gain an understanding of contextual background intertwined with the human brain, thus improving the rigor and inclusivity of human neuroscience research

    Contextualizing the impact of prenatal alcohol and tobacco exposure on neurodevelopment in a South African birth cohort: an analysis from the socioecological perspective

    Get PDF
    BackgroundAlcohol and tobacco are known teratogens. Historically, more severe prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) have been examined as the principal predictor of neurodevelopmental alterations, with little incorporation of lower doses or ecological contextual factors that can also impact neurodevelopment, such as socioeconomic resources (SER) or adverse childhood experiences (ACEs). Here, a novel analytical approach informed by a socio-ecological perspective was used to examine the associations between SER, PAE and/or PTE, and ACEs, and their effects on neurodevelopment.MethodsN = 313 mother-child dyads were recruited from a prospective birth cohort with maternal report of PAE and PTE, and cross-sectional structural brain neuroimaging of child acquired via 3T scanner at ages 8–11 years. In utero SER was measured by maternal education, household income, and home utility availability. The child’s ACEs were measured by self-report assisted by the researcher. PAE was grouped into early exposure (<12 weeks), continued exposure (>=12 weeks), and no exposure controls. PTE was grouped into exposed and non-exposed controls.ResultsGreater access to SER during pregnancy was associated with fewer ACEs (maternal education: β = −0.293,p = 0.01; phone access: β = −0.968,p = 0.05). PTE partially mediated the association between SER and ACEs, where greater SER reduced the likelihood of PTE, which was positively associated with ACEs (β = 1.110,p = 0.01). SER was associated with alterations in superior frontal (β = −1336.036, q = 0.046), lateral orbitofrontal (β = −513.865, q = 0.046), caudal anterior cingulate volumes (β = −222.982, q = 0.046), with access to phone negatively associated with all three brain volumes. Access to water was positively associated with superior frontal volume (β=1569.527, q = 0.013). PTE was associated with smaller volumes of lateral orbitofrontal (β = −331.000, q = 0.033) and nucleus accumbens regions (β = −34.800, q = 0.033).ConclusionResearch on neurodevelopment following community-levels of PAE and PTE should more regularly consider the ecological context to accelerate understanding of teratogenic outcomes. Further research is needed to replicate this novel conceptual approach with varying PAE and PTE patterns, to disentangle the interplay between dose, community-level and individual-level risk factors on neurodevelopment

    Table_1_Contextualizing the impact of prenatal alcohol and tobacco exposure on neurodevelopment in a South African birth cohort: an analysis from the socioecological perspective.DOCX

    No full text
    BackgroundAlcohol and tobacco are known teratogens. Historically, more severe prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) have been examined as the principal predictor of neurodevelopmental alterations, with little incorporation of lower doses or ecological contextual factors that can also impact neurodevelopment, such as socioeconomic resources (SER) or adverse childhood experiences (ACEs). Here, a novel analytical approach informed by a socio-ecological perspective was used to examine the associations between SER, PAE and/or PTE, and ACEs, and their effects on neurodevelopment.MethodsN = 313 mother-child dyads were recruited from a prospective birth cohort with maternal report of PAE and PTE, and cross-sectional structural brain neuroimaging of child acquired via 3T scanner at ages 8–11 years. In utero SER was measured by maternal education, household income, and home utility availability. The child’s ACEs were measured by self-report assisted by the researcher. PAE was grouped into early exposure (=12 weeks), and no exposure controls. PTE was grouped into exposed and non-exposed controls.ResultsGreater access to SER during pregnancy was associated with fewer ACEs (maternal education: β = −0.293,p = 0.01; phone access: β = −0.968,p = 0.05). PTE partially mediated the association between SER and ACEs, where greater SER reduced the likelihood of PTE, which was positively associated with ACEs (β = 1.110,p = 0.01). SER was associated with alterations in superior frontal (β = −1336.036, q = 0.046), lateral orbitofrontal (β = −513.865, q = 0.046), caudal anterior cingulate volumes (β = −222.982, q = 0.046), with access to phone negatively associated with all three brain volumes. Access to water was positively associated with superior frontal volume (β=1569.527, q = 0.013). PTE was associated with smaller volumes of lateral orbitofrontal (β = −331.000, q = 0.033) and nucleus accumbens regions (β = −34.800, q = 0.033).ConclusionResearch on neurodevelopment following community-levels of PAE and PTE should more regularly consider the ecological context to accelerate understanding of teratogenic outcomes. Further research is needed to replicate this novel conceptual approach with varying PAE and PTE patterns, to disentangle the interplay between dose, community-level and individual-level risk factors on neurodevelopment.</p
    corecore