96 research outputs found

    UV exposure causes energy trade-offs leading to increased chytrid fungus susceptibility in green tree frog larvae

    Get PDF
    Levels of ultraviolet (UV) radiation have increased in many parts of the world due to the anthropogenic destruction of the ozone layer. UV radiation is a potent immunosuppressant and can increase the susceptibility of animal hosts to pathogens. UV radiation can directly alter immune function via immunosuppression and photoimmunotolerance; however, UV may also influence pathogen defences by affecting the distribution of energy resources among competing physiological processes. Both defence against UV damage and repair of incurred damage, as well as the maintenance of immune defences and responding to an immune challenge, are energetically expensive. These competing demands for finite energy resources could trade off against one another, resulting in sub-optimal performance in one or both processes. We examined the potential for a disease-related energy trade-off in green tree frog (Litoria caerulea) larvae. Larvae were reared under high- or low-UV conditions for 12 weeks during which time we measured growth rates, metabolic rate and susceptibility to the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd). We found that larvae exposed to high levels of UV radiation had higher rates of energy expenditure than those exposed to low UV levels; however, UV exposure did not affect growth rates or developmental timings. Larvae exposed to high UV radiation also experienced greater Bd infection rates and carried a higher infection burden than those not exposed to elevated UV radiation. We propose that the increased energetic costs of responding to UV radiation were traded off against immune defences to protect larval growth rates. These findings have important implications for the aetiology of some Bd-associated amphibian declines, particularly in montane environments where Bd infections are most severe and where UV levels are highest

    Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist

    Get PDF
    Animals may overcome the challenges of temperature instability through behavioural and physiological mechanisms in response to short-and long-term temperature changes. When ectotherms face the challenge of large diel temperature fluctuations, one strategy may be to reduce the thermal sensitivity of key traits in order to maintain performance across the range of temperatures experienced. Additional stressors may limit the ability of animals to respond to these thermally challenging environments through changes to energy partitioning or interactive effects. Ornate burrowing frog (Platyplectrum ornatum) tadpoles develop in shallow ephemeral pools that experience high diel thermal variability (> 20 degrees C) and can be exposed to high levels of UV-B radiation. Here, we investigated how development in fluctuating versus stable temperature conditions in the presence of high or low UV-B radiation influences thermal tolerance and thermal sensitivity of performance traits of P. ornatum tadpoles. Tadpoles developed in either stable (24 C) or fluctuating temperatures (18-32 degrees C) under high or low UV-B conditions. Tadpoles were tested for upper critical thermal limits, thermal dependence of resting metabolic rate and maximum burst swimming performance. We hypothesised that developmental responses to thermal fluctuations would increase thermal tolerance and reduce thermal dependence of physiological traits, and that trade-offs in the allocation of metabolic resources towards repairing UV-B-induced damage may limit the ability to maintain performance over the full range of temperatures experienced. We found that P. ornatum tadpoles were thermally insensitive for both burst swimming performance, across the range of temperatures tested, and resting metabolic rate at high temperatures independent of developmental conditions. Maintenance of performance led to a trade-off for growth under fluctuating temperatures and UV-B exposure. Temperature treatment and UV-B exposure had an interactive effect on upper critical thermal limits possibly due to the upregulation of the cellular stress response. Thermal independence of key traits may allow P. ornatum tadpoles to maintain performance in the thermal variability inherent in their environment

    Coping with climatic extremes: Dietary fat content decreased the thermal resilience of barramundi (Lates calcarifer)

    Get PDF
    Aquatic organisms, including important cultured species, are forced to contend with acute changes in water temperature as the frequency and intensity of extreme weather events worsen. Acute temperature spikes are likely to threaten aquaculture species, but dietary intervention may play an important protective role. Increasing the concentration of macronutrients, for example dietary fat content, may improve the thermal resilience of aquaculture species, however, this remains unexplored. To evaluate this hypothesis, we used two commercially available diets (20% versus 10% crude fat) to examine if dietary fat content improves the growth performance of juvenile barramundi (Lates calcarifer) while increasing their resilience to acute thermal stress. Fish were fed their assigned diets for 28-days before assessing the upper thermal tolerance (CTMAX) and the thermal sensitivity of swimming performance (UCRIT) and metabolism. We found that feeding fish a high fat diet resulted in heavier fish, but did not affect the thermal sensitivity of swimming performance or metabolism over an 18 °C temperature range (from 20 to 38 °C). Thermal tolerance was compromised in fish fed the high fat diet by 0.48 °C, showing significantly lower CTMAX. Together, these results suggest that while a high fat diet increases juvenile L. calcarifer growth, it does not benefit physiological performance across a range of relevant water temperatures and may even reduce fish tolerance of extreme water temperatures. These data may have implications for aquaculture production in a warming world, where episodic extremes of temperature are likely to become more frequent

    Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands

    Get PDF
    The estuarine crocodile, Crocodylus porosus, inhabits both freshwater and hypersaline waterways and maintains ionic homeostasis by excreting excess sodium and chloride ions via lingual salt glands. In the present study, we sought to investigate the phenotypic plasticity, both morphological and functional, in the lingual salt glands of the estuarine crocodile associated with chronic exposure to freshwater (FW) and saltwater (SW) environments. Examination of haematological parameters indicated that there were no long-term disruptions to ionic homeostasis with prolonged exposure to SW. Maximal secretory rates from the salt glands of SW-acclimated animals (100.8±14.7 µmol 100 g–0.7 body mass h–1) were almost three times greater than those of FW-acclimated animals (31.6±6.2 µmol 100 g–0.7 body mass h–1). There were no differences in the mass-specific metabolic rate of salt gland tissue slices from FW- and SW-acclimated animals (558.9±49.6 and 527.3±142.8 µl O2 g–1 h–1, respectively). Stimulation of the tissue slices from SW-acclimated animals by methacholine resulted in a 33% increase in oxygen consumption rate. There was no significant increase in the metabolic rate of tissues from FW-acclimated animals in response to methacholine. Morphologically, the secretory cells from the salt glands of SW-acclimated animals were larger than those of FW-acclimated animals. In addition, there were significantly more mitochondria per unit volume in secretory tissue from SW-acclimated animals. The results from this study demonstrate that the salt glands of C. porosus are phenotypically plastic, both morphologically and functionally and acclimate to changes in environmental salinity

    Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse

    Get PDF
    Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by similar to 70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O-2 molecule consumed was also similar to 94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal

    A pathogenic skin fungus and sloughing exacerbate cutaneous water loss in amphibians

    Get PDF
    Batrachochytrium dendrobatidis (Bd) is a pathogenic fungus that causes the cutaneous, infectious disease chytridiomycosis and has been implicated in population declines of numerous anuran species worldwide. Proximate cause of death by chytridiomycosis is asystolic cardiac arrest as a consequence of severe disruption to electrolyte balance. Animals heavily infected with Bd also experience a disruption to their skin sloughing regime, indicating that core functions of the skin, such as water retention, may be severely impacted. This study examined how skin sloughing, body size and Bd infection interact to influence water loss rates in five Australian frog species: Litoria caerulea, Limnodynastes peronii, Lechriodus fletcheri, Limnodynastes tasmaniensis and Platyplectrum ornatum. Rates of water loss more than doubled during sloughing in L. caerulea. During active periods across all species, water loss rates were on average 232% higher in Bd infected frogs than in uninfected frogs. This indicates that dehydration stress may be a significant factor contributing to the morbidity of severely Bd infected anurans, a symptom that is then exacerbated by an increased rate of sloughing. When taking size into account, smaller and/or juvenile anurans may be more at risk from dehydration due to Bd infection, as they lose a greater amount of water and slough more frequently than adults. This may in part explain the higher mortality rates typical for small and juvenile frogs infected with Bd. Understanding how Bd affects the core functions of the skin, including rates of water loss, can improve our predictions of disease outcome in amphibians

    Conservation physiology and the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic and associated public health measures have had unanticipated effects on ecosystems and biodiversity. Conservation physiology and its mechanistic underpinnings are well positioned to generate robust data to inform the extent to which the Anthropause has benefited biodiversity through alterations in disturbance-, pollution- and climate change-related emissions. The conservation physiology toolbox includes sensitive biomarkers and tools that can be used both retroactively (e.g. to reconstruct stress in wildlife before, during and after lockdown measures) and proactively (e.g. future viral waves) to understand the physiological consequences of the pandemic. The pandemic has also created new risks to ecosystems and biodiversity through extensive use of various antimicrobial products (e.g. hand cleansers, sprays) and plastic medical waste. Conservation physiology can be used to identify regulatory thresholds for those products. Moreover, given that COVID-19 is zoonotic, there is also opportunity for conservation physiologists to work closely with experts in conservation medicine and human health on strategies that will reduce the likelihood of future pandemics (e.g. what conditions enable disease development and pathogen transfer) while embracing the One Health concept. The conservation physiology community has also been impacted directly by COVID-19 with interruptions in research, training and networking (e.g. conferences). Because this is a nascent discipline, it will be particularly important to support early career researchers and ensure that there are recruitment pathways for the next generation of conservation physiologists while creating a diverse and inclusive community. We remain hopeful for the future and in particular the ability of the conservation physiology community to deliver relevant, solutions-oriented science to guide decision makers particularly during the important post-COVID transition and economic recovery

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: Reflections and a horizon scan

    Get PDF
    Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has becomecommonplace and confers an ability to understand mechanistic processes,develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of \u27success stories\u27 is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative.Using a \u27horizon scan\u27,we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), aswell as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmentalmanagementand ecosystemrestoration,we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice

    Get PDF
    Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan

    Get PDF
    Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of ‘success stories’ is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a ‘horizon scan’, we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users
    • …
    corecore