1,288 research outputs found

    NMR-based assignment of isoleucine vs allo-isoleucine stereochemistry

    Get PDF
    A simple 1H and 13C NMR spectrometric analysis is demonstrated that permits differentiation of isoleucine and allo-isoleucine residues by inspection of the chemical shift and coupling constants of the signals associated with the proton and carbon at the α-stereocentre. This is applied to the estimation of epimerisation during metal-free N-arylation and peptide coupling reactions

    Association of subclinical atherosclerosis with echocardiographic indices of cardiac remodeling: The Framingham Study

    Get PDF
    BACKGROUND: It is well established that coronary artery disease progresses along with myocardial disease. However, data on the association between coronary artery calcium (CAC) and echocardiographic variables are lacking. METHODS AND RESULTS: Among 2,650 Framingham Study participants (mean age 51 yrs, 48% women; 40% with CAC \u3e 0), we related CT-based CAC score to left ventricular (LV) mass index (LVMi), LV ejection fraction (LVEF), E/e\u27, global longitudinal strain (GLS), left atrial emptying fraction (LAEF), and aortic root diameter (AoR), using multivariable-adjusted generalized linear models. CAC score (independent variable) was used as log-transformed continuous [ln(CAC+1)] and as a categorical (0, 1-100, and \u3e /=101) variable. Adjusting for standard risk factors, higher CAC score was associated with higher LVMi and AoR (betaLVMI per 1-SD increase 0.012, betaAoR 0.008; P \u3c 0.05, for both). Participants with 1 \u3c /=CAC \u3c /=100 and those with CAC \u3e /=101 had higher AoR (betaAoR 0.013 and 0.020, respectively, P = 0.01) than those with CAC = 0. CAC score was not significantly associated with LVEF, E/e\u27, GLS or LAEF. Age modified the association of CAC score with AoR; higher CAC scores were associated with larger AoR more strongly in older ( \u3e 58 years; betaAoR0.0042;P \u3c 0.007) than in younger ( \u3c /=58 years) participants (betaAoR0.0027;P \u3c 0.03). CONCLUSIONS: We observed that subclinical atherosclerosis was associated with ventricular and aortic remodeling. The prognostic significance of these associations warrants evaluation in additional mechanistic studies

    The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros

    Get PDF
    Kidney function depends on the nephron, which comprises a blood filter, a tubule that is subdivided into functionally distinct segments, and a collecting duct. How these regions arise during development is poorly understood. The zebrafish pronephros consists of two linear nephrons that develop from the intermediate mesoderm along the length of the trunk. Here we show that, contrary to current dogma, these nephrons possess multiple proximal and distal tubule domains that resemble the organization of the mammalian nephron. We examined whether pronephric segmentation is mediated by retinoic acid (RA) and the caudal (cdx) transcription factors, which are known regulators of segmental identity during development. Inhibition of RA signaling resulted in a loss of the proximal segments and an expansion of the distal segments, while exogenous RA treatment induced proximal segment fates at the expense of distal fates. Loss of cdx function caused abrogation of distal segments, a posterior shift in the position of the pronephros, and alterations in the expression boundaries of raldh2 and cyp26a1, which encode enzymes that synthesize and degrade RA, respectively. These results suggest that the cdx genes act to localize the activity of RA along the axis, thereby determining where the pronephros forms. Consistent with this, the pronephric-positioning defect and the loss of distal tubule fate were rescued in embryos doubly-deficient for cdx and RA. These findings reveal a novel link between the RA and cdx pathways and provide a model for how pronephric nephrons are segmented and positioned along the embryonic axis

    IgG and IgM Autoantibody Differences in Discoid and Systemic Lupus Patients

    Get PDF
    Systemic lupus erythematosus (SLE) patients with discoid lupus erythematosus (DLE) were reported to have milder disease. To test this observation, we used sandwich arrays containing 98 autoantigens to compare autoantibody profiles of SLE subjects without DLE (DLE-SLE+) (N=9), SLE subjects with DLE (DLE+SLE+) (N=10), DLE subjects without SLE (DLE+SLE-) (N=11), and healthy controls (N=11). We validated differentially expressed autoantibodies using immunoassays in DLE-SLE+ (N=18), DLE+SLE+ (N=17), DLE+SLE- (N=23), and healthy subjects (N=22). Arrays showed 15 IgG autoantibodies (10 against nuclear antigens) and 4 IgM autoantibodies that were differentially expressed (q-value<0.05). DLE-SLE+ subjects had higher IgG autoantibodies against double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA), histone H2A and H2B, and SS-A (52kDa) compared with all other groups including DLE+SLE+ subjects (P<0.05). Immunoassays measuring anti-dsDNA, -ssDNA, and -SS-A (52kDa) IgG autoantibodies showed similar trends (P<0.05). Healthy and DLE+SLE- subjects expressed higher IgM autoantibodies against alpha beta crystallin, lipopolysaccharide, heat-shock cognate 70, and desmoglein-3 compared with DLE+SLE+ and DLE-SLE+ subjects. IgG:IgM ratios of autoantibodies against nuclear antigens progressively rose from healthy to DLE-SLE+ subjects. In conclusion, lower IgG autoantibodies against nuclear antigens in DLE+SLE+ versus DLE-SLE+ subjects suggest that DLE indicates lower disease severity. Higher IgM autoantibodies against selected antigens in healthy and DLE+SLE- subjects may be nonpathogenic

    Sympathoinhibition and vasodilation contribute to the acute hypotensive response of the superoxide dismutase mimic, MnTnBuOE-2-PyP5+, in hypertensive animals

    Get PDF
    The pathogenesis of hypertension has been linked to excessive levels of reactive oxygen species (ROS), particularly superoxide (O2•−), in multiple tissues and organ systems. Overexpression of superoxide dismutase (SOD) to scavenge O2•− has been shown to decrease blood pressure in hypertensive animals. We have previously shown that MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic currently in clinical trials as a normal tissue protector for cancer patients undergoing radiation therapy, can scavenge O2•− and acutely decrease normotensive blood pressures. Herein, we hypothesized that BuOE decreases hypertensive blood pressures. Using angiotensin II (AngII)-hypertensive mice, we demonstrate that BuOE administered both intraperitoneally and intravenously (IV) acutely decreases elevated blood pressure. Further investigation using renal sympathetic nerve recordings in spontaneously hypertensive rats (SHRs) reveals that immediately following IV injection of BuOE, blood pressure and renal sympathetic nerve activity (RSNA) decrease. BuOE also induces dose-dependent vasodilation of femoral arteries from AngII-hypertensive mice, a response that is mediated, at least in part, by nitric oxide, as demonstrated by ex vivo video myography. We confirmed this vasodilation in vivo using doppler imaging of the superior mesenteric artery in AngII-hypertensive mice. Together, these data demonstrate that BuOE acutely decreases RSNA and induces vasodilation, which likely contribute to its ability to rapidly decrease hypertensive blood pressure

    Ir(III) Diamine Transfer Hydrogenation Catalysts in Cancer Cells

    Get PDF
    The development of catalytic metallodrugs is an emerging field that may offer new approaches to cancer chemotherapeutic design. By exploiting the unique properties of transition metal complexes, in‐cell catalysis can be applied to modulate the cellular redox balance as part of a multi‐targeting mechanism of action. We describe the synthesis and characterization of six coordinatively unsaturated iridium(III) diamine catalysts that are stable at physiological pH in aqueous solution. Reduction of the colorimetric substrate 2,6‐dichlorophenolindophenol by transfer hydrogenation under biologically compatible conditions achieved turnover frequencies up to 63 ± 2 h−1 and demonstrated that the source of hydride (sodium formate) is the limiting reagent, despite being in a 1000‐fold excess of the catalyst. The catalyst showed low in vivo acute toxicity in zebrafish embryos and modest in vitro potency towards cancer cells. When administered alone, the catalyst generated oxidative stress in cells (an effect that was conserved in vivo), but co‐treatment with a nontoxic dose of sodium formate negated this effect. Co‐treatment with sodium formate significantly enhanced catalyst potency in cancer cells (A2780 ovarian and MCF7 breast cancer cells) and drug‐resistant cells (A2780cis and MCF7‐TAMR1) but not in non‐tumorigenic cells (MRC5), demonstrating that a redox‐targeting mechanism may generate selectivity for cancer cells

    Multiplexed Monitoring of Neurochemicals via Electrografting- Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors

    Get PDF
    Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 μm × 50 μm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (−COOH or −NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor \u3e22-fold over norepinephrine; serotonin sensor \u3e17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs
    corecore