14 research outputs found

    Bioleaching for resource recovery from low-grade wastes like fly and bottom ashes from municipal incinerators: A SWOT analysis

    Get PDF
    Bioleaching (or microbial leaching) is a biohydrometallurgical technology that can be applied for metal recovery from anthropogenic waste streams. In particular, fly ashes and bottom ashes of municipal solid waste incineration (MSWI) can be used as a target material for biomining. Globally, approximately 46 million tonnes of MSWI ashes are produced annually. Currently landfilled or used as aggregate, these contain large amounts of marketable metals, equivalent to low-grade ores. There is opportunity to recover critical materials as the circular economy demands, using mesophile, moderately thermophile, and extremophile microorganisms for bioleaching. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was developed to assess the potential of this biotechnology to recover critical metals from MSWI wastes. Bioleaching has potential as a sustainable technology for resource recovery and enhanced waste management. However, stakeholders can only reap the full benefits of bioleaching by addressing both the technical engineering challenges and regulatory requirements needed to realise and integrated approach to resource use

    The direction, timing and demography of Popillia japonica (Coleoptera) invasion reconstructed using complete mitochondrial genomes

    Get PDF
    The Japanese beetle Popillia japonica is a pest insect that feeds on hundreds of species of wild and cultivated plants including important fruit, vegetable, and field crops. Native to Japan, the pest has invaded large areas of the USA, Canada, the Azores (Portugal), Italy, and Ticino (Switzerland), and it is considered a priority for control in the European Union. We determined the complete mitochondrial genome sequence in 86 individuals covering the entire distribution of the species. Phylogenetic analysis supports a major division between South Japan and Central/North Japan, with invasive samples coming from the latter. The origin of invasive USA samples is incompatible, in terms of the timing of the event, with a single introduction, with multiple Japanese lineages having been introduced and one accounting for most of the population expansion locally. The origin of the two invasive European populations is compatible with two different invasions followed by minimal differentiation locally. Population analyses provide the possibility to estimate the rate of sequence change from the data and to date major invasion events. Demographic analysis identifies a population expansion followed by a period of contraction prior to the invasion. The present study adds a time and demographic dimension to available reconstructions

    Polystyrene shaping effect on the enriched bacterial community from the plastic‑eating Alphitobius diaperinus (Insecta: Coleoptera)

    Get PDF
    Plastic pollution has become a serious issue of global concern, and biodegradation of plastic wastes is representing one attractive environment-friendly alternative to traditional disposal paths. It is known that insects are involved in the plastic polymer degradation process, with reported evidence of tenebrionid beetle larvae capable to degrade polystyrene (PS), one of the most used plastics worldwide. Recently, a ribosomal RNA based survey on the insect gut microbiota of the lesser mealworm Alphitobius diaperinus has revealed diferentially abundant microbial taxa between PS-fed larvae and control group. Following these fndings, an enrichment bacterial culture was set up in liquid carbon-free basal medium with PS flm as sole carbon source using PS-fed larvae of A. diaperinus as inoculum. After two-months the culture was analysed both by molecular and culture-based methods. Isolated bacteria which had become prevalent under the selective enrichment conditions resulted ascribable to three taxonomic groups: Klebsiella, Pseudomonas, and Stenothrophomonas. The predominance of these groups in PS-fed larvae was confrmed by using bacterial 16S rRNA gene amplicon sequencing, and it was consistent with the results of previous reports. Isolated bacteria were able to attach to PS surfaces and SEM observations showed the presence of thin fbrillar structures connecting the bacterial cells to the abiotic surface

    De novo assembly and annotation of Popillia japonica’s genome with initial clues to its potential as an invasive pest

    Get PDF
    Background The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. Results The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. Conclusions The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control

    <em>De novo</em> mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome.

    No full text
    The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and&nbsp;HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development

    De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome

    No full text
    textabstractThe overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses
    corecore