13 research outputs found

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Identifying key priorities for research to protect the consumer with food hypersensitivity:a UK Food Standards Agency Priority Setting Exercise

    Get PDF
    Introduction: Food hypersensitivity (FHS), including food allergy, coeliac disease and food intolerance, is a major public health issue. The Food Standards Agency (FSA), an independent UK Government department working to protect public health and consumers’ wider interests in food, sought to identify research priorities in the area of FHS. Methods: A priority setting exercise was undertaken, using a methodology adapted from the James Lind Alliance—the first such exercise with respect to food hypersensitivity. A UK-wide public consultation was held to identify unanswered research questions. After excluding diagnostics, desensitization treatment and other questions which were out of scope for FSA or where FSA was already commissioning research, 15 indicative questions were identified and prioritized by a range of stakeholders, representing food businesses, patient groups, health care and academia, local authorities and the FSA. Results: 295 responses were received during the public consultation, which were categorized into 70 sub-questions and used to define 15 key evidence uncertainties (‘indicative questions’) for prioritization. Using the JLA prioritization framework, this resulted in 10 priority uncertainties in evidence, from which 16 research questions were developed. These could be summarized under the following 5 themes: communication of allergens both within the food supply chain and then to the end consumer (ensuring trust in allergen communication); the impact of socio-economic factors on consumers with FHS; drivers of severe reactions; mechanism(s) underlying loss of tolerance in FHS; and the risks posed by novel allergens/processing. Discussion: In this first research prioritization exercise for food allergy and FHS, key priorities identified to protect the food-allergic public were strategies to help allergic consumers to make confident food choices, prevention of FHS and increasing understanding of socio-economic impacts. Diagnosis and treatment of FHS was not considered in this prioritization

    Evaluating the effectiveness of abbreviated breast MRI (abMRI) interpretation training for mammogram readers : a multi-centre study assessing diagnostic performance, using an enriched dataset

    Get PDF
    Background Abbreviated breast MRI (abMRI) is being introduced in breast screening trials and clinical practice, particularly for women with dense breasts. Upscaling abMRI provision requires the workforce of mammogram readers to learn to effectively interpret abMRI. The purpose of this study was to examine the diagnostic accuracy of mammogram readers to interpret abMRI after a single day of standardised small-group training and to compare diagnostic performance of mammogram readers experienced in full-protocol breast MRI (fpMRI) interpretation (Group 1) with that of those without fpMRI interpretation experience (Group 2). Methods Mammogram readers were recruited from six NHS Breast Screening Programme sites. Small-group hands-on workstation training was provided, with subsequent prospective, independent, blinded interpretation of an enriched dataset with known outcome. A simplified form of abMRI (first post-contrast subtracted images (FAST MRI), displayed as maximum-intensity projection (MIP) and subtracted slice stack) was used. Per-breast and per-lesion diagnostic accuracy analysis was undertaken, with comparison across groups, and double-reading simulation of a consecutive screening subset. Results 37 readers (Group 1: 17, Group 2: 20) completed the reading task of 125 scans (250 breasts) (total = 9250 reads). Overall sensitivity was 86% (95% confidence interval (CI) 84–87%; 1776/2072) and specificity 86% (95%CI 85–86%; 6140/7178). Group 1 showed significantly higher sensitivity (843/952; 89%; 95%CI 86–91%) and higher specificity (2957/3298; 90%; 95%CI 89–91%) than Group 2 (sensitivity = 83%; 95%CI 81–85% (933/1120) p < 0.0001; specificity = 82%; 95%CI 81–83% (3183/3880) p < 0.0001). Inter-reader agreement was higher for Group 1 (kappa = 0.73; 95%CI 0.68–0.79) than for Group 2 (kappa = 0.51; 95%CI 0.45–0.56). Specificity improved for Group 2, from the first 55 cases (81%) to the remaining 70 (83%) (p = 0.02) but not for Group 1 (90–89% p = 0.44), whereas sensitivity remained consistent for both Group 1 (88–89%) and Group 2 (83–84%). Conclusions Single-day abMRI interpretation training for mammogram readers achieved an overall diagnostic performance within benchmarks published for fpMRI but was insufficient for diagnostic accuracy of mammogram readers new to breast MRI to match that of experienced fpMRI readers. Novice MRI reader performance improved during the reading task, suggesting that additional training could further narrow this performance gap

    Annexin A1 expression in a pooled breast cancer series : Association with tumor subtypes and prognosis

    No full text
    Background: Annexin A1 (ANXA1) is a protein related with the carcinogenesis process and metastasis formation in many tumors. However, little is known about the prognostic value of ANXA1 in breast cancer. The purpose of this study is to evaluate the association between ANXA1 expression, BRCA1/2 germline carriership, specific tumor subtypes and survival in breast cancer patients. Methods: Clinical-pathological information and follow-up data were collected from nine breast cancer studies from the Breast Cancer Association Consortium (BCAC) (n = 5,752) and from one study of familial breast cancer patients with BRCA1/

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    No full text
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PAM, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and pArg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM(-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor
    corecore