13 research outputs found

    Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.Includes bibliographical references (p. 333-348).Poly(ethylene terephthalate) is widely used for consumer products such as drawn fibers, stretched films, and soda bottles. Much of its commercial success lies in the fact that it crystallizes at large strains during warm deformation processing. The imparted crystallinity increases its stiffness and strength, improves its dimensional stability, and increases its density. The crystallization process and the stress-strain behavior above the glass transition depend strongly on temperature, strain rate, strain magnitude, and strain state. A robust constitutive model to accurately account for this stress-strain behavior in the processing regime is highly desirable in order to predict and computationally design warm deformation processes to achieve desired end product geometries and properties. This thesis aims to better understand the material behavior above the glass transition temperature in the processing regime. It examines the strain rate, strain state, and temperature dependent mechanical behavior of two polymers: PET and PETG, an amorphous non-crystallizing copolymer of PET, in order to isolate the effects of crystallization on the stress-strain behavior. Experiments over a wide range of temperatures and strain rates were performed in uniaxial and plane strain compression. A constitutive model of the observed rate and temperature dependent stress-strain behavior was then developed. The model represents the material's resistance to deformation with two parallel elements: an intermolecular resistance to flow and a resistance due to molecular network interactions.(cont.) The model predicts the temperature and rate dependence of many stress-strain features of PET and PETG very well, including the initial modulus, flow stress, initial hardening modulus, and dramatic strain hardening. The modeling results indicate that the large strain hardening behavior of both materials can only be captured by including a critical orientation parameter to halt the molecular relaxation process once the network achieves a specific level of molecular orientation. This suggests that much of the strain hardening in PET is due to molecular orientation and not to strain-induced crystallization. An example blow molding process is simulated to demonstrate the industrial applicability of the proposed model.by Rebecca B. Dupaix.Ph.D

    Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

    Get PDF
    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems

    Mechanical Behavior of a Series of Copolyester Blends near the Glass Transition: Monotonic and Load-Hold Behavior in Compression

    Get PDF
    Monotonic loading tests were conducted on five commercial blends of poly(ethylene terephthalate) (PET) and poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) at temperatures of 90°C and 100°C and strain rates of 0.1/s, 0.05/s, and 0.005/s in uniaxial and plane strain compression. On comparing the mechanical behavior of the five materials, it was found that the behavior of the low-PCT content materials was different from the high-PCT content materials only at conditions that favored strain-induced crystallization, particularly in plane strain compression. Load-hold tests were also conducted on three of the blends with similar results to the monotonic tests. Material differences were only pronounced at certain conditions, and in these cases the low-PCT content materials showed increased strain hardening after the hold period while the high-PCT content material did not. Therefore, it was found that the addition of a hold period was not exclusively required to observe differences in the crystallizable materials over the noncrystallizing blends. The increased strain hardening likely associated with crystallization in PET was only observed when the following conditions were met: (i) strain rates of 0.1/s and above, (ii) temperatures of 90°C–100°C, (iii) plane strain compression, and (iv) after a certain level of deformation

    Simulations of hydrogel-coated neural microelectrodes to assess biocompatibility improvement using strain as a metric for micromotion

    No full text
    This study investigates the benefit of coating silicon-substrate microelectrode arrays with hydrogel material for improved biocompatibility. Varying coating thicknesses and hydrogel material descriptions were considered to determine the impact on reducing strain in the surrounding brain tissue caused by relative micromotion of the electrode. Finite element simulations were used to explore biocompatibility by focusing on the longitudinal micromotion of an implanted single electrode shank. The finite element model for the brain and electrode, both with and without the hydrogel coating, remained constant. Three constitutive models were considered to describe the brain and/or hydrogel material: linear elastic, hyperviscoelastic, and fractional Zener. All combinations of these three material descriptions were explored. The simulation results showed that the constitutive model, electrode coating thickness, and the degree of microelectrode adhesion to the brain influenced the maximum principal logarithmic strain and also the maximum electrode displacement. Biocompatibility was improved as evidenced by a reduction in the magnitude of strain in the brain when (i) a hydrogel coating was applied to the silicon electrode, (ii) the thickness of the hydrogel coating was increased, and (iii) the brain adhered completely to the hydrogel coating. A decrease in microelectrode displacement may be a useful metric for assessing an improvement in micromotion reduction.This is the version of the article before peer review or editing, as submitted by an author to Biomedical Physics & Engineering Express. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at DOI: 10.1088/2057-1976/aab990.</p

    Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology

    No full text
    Electrospun fiber mats (EFMs) are highly versatile biomaterials used in a myriad of biomedical applications. Whereas some facets of EFMs are well studied and can be highly tuned (e.g., pore size, fiber diameter, etc.), other features are under characterized. For example, although substrate mechanics have been explored by several groups, most studies rely on Young&#8217;s modulus alone as a characterization variable. The influence of fiber mat thickness and the effect of supports are variables that are often not considered when evaluating cell-mechanical response. To assay the role of these features in EFM scaffold design and to improve understanding of scaffold mechanical properties, we designed EFM scaffolds with varying thickness (50&#8211;200 &#181;m) and supporting methodologies. EFM scaffolds were comprised of polycaprolactone and were either electrospun directly onto a support, suspended across an annulus (3 or 10 mm inner diameter), or &#8220;tension-released&#8222; and then suspended across an annulus. Then, single cell spreading (i.e., Feret diameter) was measured in the presence of these different features. Cells were sensitive to EFM thickness and suspended gap diameter. Overall, cell spreading was greatest for 50 &#181;m thick EFMs suspended over a 3 mm gap, which was the smallest thickness and gap investigated. These results are counterintuitive to conventional understanding in mechanobiology, which suggests that stiffer materials, such as thicker, supported EFMs, should elicit greater cell polarization. Additional experiments with 50 &#181;m thick EFMs on polystyrene and polydimethylsiloxane (PDMS) supports demonstrated that cells can &#8220;feel&#8222; the support underlying the EFM if it is rigid, similar to previous results in hydrogels. These results also suggest that EFM curvature may play a role in cell response, separate from Young&#8217;s modulus, possibly because of internal tension generated. These parameters are not often considered in EFM design and could improve scaffold performance and ultimately patient outcomes

    Mechanics of the gel-glass interface modeled using FEM.

    No full text
    <p>(A) Stress contour plots of Matrigel with varying height. Axisymmetric elements used. Von Mises stress is an equivalent stress that includes both normal stress (tension/compression) and shear stress contributions. It is calculated from the stress components acting at each location and gives a convenient way of comparing the overall magnitude of stress in different regions. (B) Stress felt at the Matrigel-glass interface as a function of gel height.</p
    corecore