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Abstract

Poly(ethylene tereplithalate) is widely used for consumer products such as drawn
fibers, stretched films, and soda bottles. Much of its commercial success lies in the
fact that it crystallizes at large strains during warm deformation processing. The
imparted crystallinity increases its stiffness and strength, improves its dimensional
stability, and increases its density. The crystallization process and the stress-strain
behavior above the glass transition depend strongly on temperature, strain rate, strain
magnitude, and strain state. A robust constitutive model to accurately account for
this stress-strain behavior in the processing regime is highly desirable in order to
predict and computationally design warm deformation processes to achieve desired
end product geometries and properties.

This thesis aims to better understand the material behavior above the glass tran-
sition temperature in the processing regime. It examines the strain rate, strain state,
and temperature dependent mechanical behavior of two polymers: PET and PETG,
an amorphous non-crystallizing copolymer of PET, in order to isolate the effects of
crystallization on the stress-strain behavior. Experiments over a wide range of tem-
peratures and strain rates were performed in uniaxial and plane strain compression.
A constitutive model of the observed rate and temperature dependent stress-strain
behavior was then developed. The model represents the material's resistance to de-
formation with two parallel elements: an intermolecular resistance to flow and a
resistance due to molecular network interactions. The model predicts the temper-
ature and rate dependence of many stress-strain features of PET and PETG very
well, including the initial modulus, flow stress, initial hardening modulus, and dra-
matic strain hardening. The modeling results indicate that the large strain hardening
behavior of both materials can only be captured by including a critical orientation
parameter to halt the molecular relaxation process once the network achieves a spe-
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cific level of molecular orientation. This suggests that much of the strain hardening
in PET is due to molecular orientation and not to strain-induced crystallization. An

example blow molding process is simulated to demonstrate the industrial applicability
of the proposed model.

Thesis Supervisor: Mary C. Boyce
Title: Professor of Mechanical Engineering

4



Acknowledgments

I wish to thank my thesis advisor, Mary C. Boyce, for her continued guidance through

my graduate education; my thesis committee: Simona Socrate, Greg Rutledge, and

Gareth McKinley, for thoughtful discussions and flexibility in finding time for my

committee meetings; Tom Pecorini and Fred Colhoun from Eastman Chemical, not

only for the many material samples, but also for helpful meetings and discussions;

and the National Science Foundation and Eastman Chemical for financial support of

my graduate work.

On a more personal note I am very thankful for the friendships of all of my

colleagues at MIT, especially Mats, Franco, Nuo, Hang, Rajdeep, Adam, Una, Ray,

Simona, and many others who have come and gone. You all made coming to work

fun, even when it was otherwise drudgery.

I could hardly begin to thank all of my friends and family members, so I will

keep it simple by sticking with the most important: Mom and Dad, thanks for your

continual encouragement, I love you both. And most importantly to Brian. We made

it, didn't we? Thank you for not letting me drop out when things were tough and

I was stressed and we were trying to plan our wedding. Thank you for taking such

good care of me when I came down with mono. I may have been able to get to this

point without you, but it certainly would not have been as much fun nor as much of

an adventure. Thank you for being so perfect for me; for inspiring me and lifting me

up, for bringing flowers to my thesis defense, and for simply loving me. Thanks for

everything!

5





Contents

0.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction 33

1.1 Experimental Background . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Constitutive Modeling Background . . . . . . . . . . . . . . . . . . . 49

1.3 Blow Molding Simulation Background . . . . . . . . . . . . . . . . . . 54

1.4 PETG Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 PETG Experiments 63

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 DSC.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 DMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Compression Experiments . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6 Tensile Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7 Biaxial Stretching Experiments . . . . . . . . . . . . . . . . . . . . . 70

2.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8.1 Compression Experiments . . . . . . . . . . . . . . . . . . . . 71

2.8.2 Tension Experiments . . . . . . . . . . . . . . . . . . . . . . . 97

2.8.3 Biaxial Extension Experiments . . . . . . . . . . . . . . . . . 98

2.9 Summary of PETG Observations . . . . . . . . . . . . . . . . . . . . 99

7



3 PET Experiments 113

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.2 M aterial . . . . . . . . . . . . . . . . m . .. . . . . . . . . . . . . . 113

3.3 D SC . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.4 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 Results and Discussion . . . . . . . . . . . . . . . . .. . . . . . . . . 114

3.5.1 Compression Experiments . . . . . . . . . . . . . . . . . . . . 114

3.5.2 Tension Experiments . . . . . . . . . . . . . . . . . . . . . . . 134

3.5.3 Biaxial Extension Experiments . . . . . . . . . . . . . . . . . 135

3.6 Summary of PET Observations . . . . . . . . . . . . . . . . . . . . . 136

3.7 Comparison of PET and PETG Behavior . . . . . . . . .. . . . . . . 137

4 Constitutive Model for PETG

4.1 Background and Development . . . . . . . . . . .

4.1.1 Resistance A: Intermolecular Interactions .

4.1.2 Resistance B: Network Interactions . . . .

4.2 Determining the Material Constants . . . . . . . .

4.2.1 Resistance A (Intermolecular) . . . . . . .

4.2.2 Resistance B (Network) . . . . . . . . . .

4.3 Error in Curve Fitting . . . . . . . . . . . . . . .

4.4 Comparison with Experimental Data . . . . . . .

4.5 Improvements to the Model . . . . . . . . . . . .

4.5.1 Cessation of Flow . . . . . . . . . . . . . .

4.5.2 Orientation Angle Parameter and a New A

4.5.3

4.6 PETG

157

157

158

162

165

165

172

175

177

196

196

pproach to Reptation 213

Comparison with the Doi-Edwards Model . . . . . . . . . . . 237

Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . 242

5 Constitutive Model applied to PET 245

5.1 Review of the Model..... . ........................... 245

5.1.1 Resistance A: Intermolecular Interactions . . . . . . . . . . . . 247

5.1.2 Resistance B: Network Interactions . . . . . . . . . . . . . . . 248

8



5.2 Model Compared to PET Using PETG Material Constants . . . . . . 250

5.3 Material Constants Fit to PET . . . . . . . . . . . . . . . . . . . . . 256

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6 Model Extension Using Anisotropic 8-chain Model 263

6.1 Difference between Orientation Angle Parameter and Molecular Chain

A ngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6.2 Description of the 8-chain Anisotropic Model . . . . . . . . . . . . . . 268

6.3 Incorporation of the Anisotropic Model in the PETG Model . . . . . 271

6.4 Comparison with Experimental Data . . . . . . . . . . . . . . . . . . 274

6.5 A Comment on Shear Behavior . . . . . . . . . . . . . . . . . . . . . 274

7 Blow Molding Simulations 289

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.2 Experimental Blow Molding Parameters . . . . . . . . . . . . . . . . 289

7.3 Description of the Finite Element Model . . . . . . . . . . . . . . . . 292

7.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 296

8 Conclusions and Future Work 309

A Mathematical details of the averaging required for the Doi-Edwards

Model 315

B Derivative of the Strain-Energy Function 321

C Time-integration Procedure for the Constitutive Model 325

9



C



Crystal structure of PET . . . . . . . . . . . . . . . . . . . . . . . . .

Crystallographic planes of a PET crystal . . . . . . . . . . . . . . . .

Tensile yield stress of isotropic PET . . . . . . . . . . . . . . . . . . .

Evolution of crystal structure in PET . . . . . . . . . . . . . . . . . .

Crystallite size versus heatset temperature . . . . . . . . . . . . . . .

Orientation of crystals in uniaxial compression . . . . . . . . . . . . .

Orientation of crystals in plane strain compression . . . . . . . . . . .

Yield and craze stress as a function of CHDM content . . . . . . . . .

Chemical structure of PET . . . . . . . . . . . . . . . . . . . . . . . .

Chemical structure of PCT . . . . . . . . . . . . . . . . . . . . . . . .

PETG DMA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PETG DMA data, enlarged to show detail at high temperature

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

36

37

38

40

41

47

48

59

64

64

66

66

67

69

69

70

75

76

76

77

77

78

25 . . . . . . . . . .

25 C, enlarged .

60 C . . . . . . . . .

60 C, enlarged . .

70 C . . . . . . . . .

70 C, enlarged . .

11

List of Figures

Compression experiment setup.....

Uniaxial compression specimens . . . .

Plane strain compression specimens . .

Tensile bar . . . . . . . . . . . . . . . .

PETG Uniaxial compression data, T =

PETG Uniaxial compression data, T =

PETG Uniaxial compression data, T =

PETG Uniaxial compression data, T =

PETG Uniaxial compression data, T =

PETG Uniaxial compression data, T =



2-15

2-16

2-17

2-18

2-19

2-20

2-21

2-22

2-23

2-24

2-25

2-26

2-27

2-28

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, T

PETG Uniaxial compression data, 5:

PETG Uniaxial compression data, 5

PETG Uniaxial compression data, 5

PETG Uniaxial compression data, 5

PETG Uniaxial compression data, 5

PETG Uniaxial compression data, 5

2-29 PETG Uniaxial compression, T = 25 C, S = -.1/s, various final strains 85

2-30 PETG Uniaxial compression, T = 60 C, 5 = -.1/s, various final strains 86

2-31 PETG Uniaxial compression, T = 80 C, 5 = -.1/s, various final strains 86

2-32 PETG Uniaxial compression, T = 90 C, 5 = -.1/s, various final strains 87

2-33 PETG Uniaxial compression, T = 100 C, 5 = -.1/s, various final strains 87

2-34 PETG Plane strain compression data, T = 25 C . . . . ... . . . . . 88

2-35 PETG Plane strain compression data, T = 25 C, enlarged . . . . . . 88

2-36 PETG Plane strain compression data, T = 80 C . . . . . . . . . . . 89

2-37 PETG Plane strain compression data, T = 80 C, enlarged . . . . . . 89

2-38 PETG Plane strain compression data, T = 90 C . . . . . . . . . . . 90

2-39 PETG Plane strain compression data, T = 90 C, enlarged . . . . . . 90

2-40 PETG Plane strain compression data, T = 90 C . . . . . . . . . . . 91

2-41 PETG Plane strain compression data, T = 100 C, enlarged . . . . . 91

2-42 PETG Plane strain compression data, 5 = -.005/s . . . . . . . . . . . 92

2-43 PETG Plane strain compression data, 5 = -.01/s . . . . . . . . . . . . 92

2-44 PETG Plane strain compression data, 5 = -.05/s . . . . . . . . . . . . 93

12

= 80 'C . . . . . . . . . . . . .

= 80 C, enlarged........

= 90 C . . . . . . . . . . . . .

= 90 C, enlarged........

= 100 C . . . . . . . . . . . . .

= 100',C, enlarged.......

= 110C . . . . . . . . . . . . .

= 110WC, enlarged.......

= -. 005/s . . . . . . . . . . . . .

= -. 01/s . . . . . . . . . . . . . .

- -.05/s . . . . . . . . . . . . . .

= -.1/s . . . . . . . . . . . . . .

- -.5/s . . . . . . . . . . . . . .

- -1.0/s . . . . . . . . . . . . . .

78

79

79

80

80

81

81

82

82

83

83

84

84

85



2-45

2-46

2-47

2-48

2-49

2-50

2-51

2-52

2-53

2-54

2-55

2-56

2-57

2-58

2-59

2-60

2-61

2-62

2-63

2-64

2-65

2-66

2-67

0C. . ..

PETG Plane strain compression data, = -. 1/s . . . . . .

PETG Plane strain compression data, t = -.5/s . . . . . .

PETG Plane strain compression data, t = -1.0/s . . . . . .

PETG Uniaxial and plane strain compression data, T = 25

PETG Uniaxial and plane strain compression data, T = 80

PETG Uniaxial and plane strain compression data, T = 90

PETG Uniaxial and plane strain compression data, T = 10

PETG Uniaxial and plane strain compression data, T = 25

tional compliance in plane strain . . . . . . . . . . . . . .

PETG Uniaxial tension, load-displacement . . . . . . . . .

PETG Uniaxial tension, nominal stress-stretch . . . . . . .

PETG Uniaxial tension, true stress-stretch . . . . . . . . .

PETG Uniaxial tension, true stress-stretch, enlarged . . .

PETG Uniaxial tension, true stress-true strain . . . . . . .

PETG Equibiaxial extension, true stress-strain, 14 in/sec .

PETG Constrained width tension, true stress-strain, 14 in/

PETG Constrained width tension, true stress-stretch, 14 in

PETG Constrained width tension, true stress-stretch, 14 in/

PETG Sequential biaxial extension, engr stress-strain, A =

PETG Sequential biaxial extension, true stress-strain, A =

PETG Sequential biaxial extension, true stress-stretch, A,

PETG Sequential biaxial extension, engr stress-strain, A =

PETG Sequential biaxial extension, true stress-strain, A =

PETG Sequential biaxial extension, true stress-stretch, A

PET Uniaxial compression data, T = 25 C . . . . . . . .

PET Uniaxial compression data, T = 25 C, enlarged . . .

PET Uniaxial compression data, T = 60'C . . . . . . . .

PET Uniaxial compression data, T = 60 C, enlarged . . .

PET Uniaxial compression data, T =_70 C . . . . . . . .

C, Addi-

sec

/sec

sec,

2.

2.

=2

3

3.

= 3

93

94

94

95

95

96

96

S . . . . 97

S . . . . 100

. 100

. 101

S . . . . 101

S . . . . 102

. 103

. . . . 104

. . . 105

enlarged 106

107

108

S . . . . 109

S . . . . 110

. . . . 111

.... 112

116

116

117

117

118

13

0

3-1

3-2

3-3

3-4

3-5



3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

PET

PET

PET

PET

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

PET Uniaxial

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

compression data,

6 = -.005/s

e

Uniaxial compression data, e =

Uniaxial compression data, S =

Uniaxial compression data, S =

Uniaxial compression data, e =

3-21 PET Plane strain compression data,

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

PET Plane

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

strain compression data,

-.01/s

-.05/s

-.5/s

-1.0/s.

= 25 .....

= 25 C, enlarged

= 80'C . . . . .

= 80 C, enlarged

= 90 C . . . . .

T

T

T

T

T

T = 90 C, enlarged

T

T

S

S

S

S

= 100C . . . . .

= 100 C, enlarge(

= -.005/s . . . . .

=-.01/s

=-.05/s

=-.1/s . . . . . .

3-33 PET Plane strain compression data, S = -.5/s......

T = 70 C, enlarged . .

T = 80C . . . . . . .

T = 80WC, enlarged . .

T = 90C . . . . . . .

T = 90 C, enlarged . .

T = 100C . . . . . . .

T = 100C, enlarged

T = 110C . . . . . . .

T = 110 C, enlarged

3-34 PET Plane strain compression data, S = -1.0/s . . . . . . .

3-35 PET Uniaxial and plane strain compression data, T = 25 C

14

.118

.119

.119

.120

.120

.121

.121

.122

.122

.123

.123

.124

.124

.125

.125

.126

.126

.127

.127

.128

.128

.129

d . . . . . . 129

. . . . . . . 130

. . . . . . . 130

. . . . . . . 131

. . . . . . . 131

. . . . . . . 132

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3-30

3-31

3-32

132

133

=



3-36 PET Uniaxial and plane strain compression data, T = 80 C . . . . . 133

3-37 PET Uniaxial and plane strain compression data, T = 90" C . . . . . 134

3-38 PET Uniaxial and plane strain compression data, T = 100 C . . . . 135

3-39 PET Tensile experiments, load-displacement . . . . . . . . . . . . . . 138

3-40 PET Tensile experiments, nominal stress-stretch . . . . . . . . . . . . 138

3-41 PET Tensile experiments, true stress-stretch . . . . . . . . . . . . . . 139

3-42 PET Tensile experiments, true stress-stretch, enlarged . . . . . . . . . 139

3-43 PET Tensile experiments, true stress-true strain . . . . . . . . . . . . 140

3-44 PET Equibiaxial extension, true stress-strain, 14 in/sec . . . . . . . . 141

3-45 PET Constrained width tension, true stress-strain, 14 in/sec ..... 142

3-46 PET Constrained width tension, true stress-stretch, 14 in/sec . . . . 143

3-47 PET Constrained width tension, true stress-stretch, 14 in/sec, enlarged 144

3-48 PET Sequential biaxial extension, engr stress-strain, A = 2 . . . . . . 145

3-49 PET Sequential biaxial extension, true stress-strain, A = 2 . . . . . . 146

3-50 PET Sequential biaxial extension, true stress-stretch, A = 2 . . . . . 147

3-51 PET Sequential biaxial extension, engr stress-strain, A = 3 . . . . . . 148

3-52 PET Sequential biaxial extension, true stress-strain, A = 3 . . . . . . 149

3-53 PET Sequential biaxial extension, true stress-stretch, A = 3 . . . . . 150

3-54 PETG Uniaxial compression data, T = 90 C . . . . . . . . . . . . . 151

3-55 PET Uniaxial compression data, T = 90 C . . . . . . . . . . . . . . 151

3-56 PETG Uniaxial compression data, = -. 1/s . . . . . . . . . . . . . . 152

3-57 PET Uniaxial compression data, 5 = -.1/s . . . . . . . . . . . . . . . 152

3-58 PETG Uniaxial and plane strain compression data, T = 90 C . . . . 153

3-59 PET Uniaxial and plane strain compression data, T = 90 C . . . . . 153

3-60 PETG Uniaxial and plane strain compression data, T = 100 C . . . 154

3-61 PET Uniaxial and plane strain compression data, T = 100 C . . . . 154

3-62 PETG Constrained width tension, true stress-strain, 14 in/sec . . . . 155

3-63 PET Constrained width tension, true stress-strain, 14 in/sec . . . . . 156

4-1 Schematic representation of the constitutive model . . . . . . . . . . 159

15



4-2 Kinematical description of elastic-plastic decomposition . . . . . . . .

4-3 Schematic illustrating the stretching and orientation of chains in a

random network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-4 Schematic illustrating the 8-chain network model . . . . . . . . . . .

4-5 Illustration of the tube model . . . . . . . . . . . . . . . . . . . . . .

4-6 Description of initial modulus curve fit and parameters . . . . . . . .

4-7 PETG DMA data and reduced data points for discrete strain rates

4-8 PETG DMA data combined with uniaxial initial modulus data . . . .

4-9 PETG DMA data, uniaxial initial modulus data, and curve fit . .

4-10 PETG Uniaxial initial modulus data and curve fit, various strain rates

4-11 PETG Flow stress as a function of strain rate . . . . . . . . . . . . .

4-12 PETG Uniaxial compression, T = 25 C, 6 = -. 005/s, with strain

hardening curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-13 PETG Plane strain, T = 25 C, 6 = -. 005/s, with strain hardening

curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-14 PETG Uniaxial compression, T = 90 C, comparing prediction with

experim ent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-15 Illustration of error between simulation and experimental data . . . .

4-16 Illustration of error between simulation and experimental data . . . .

4-17 Uniaxial compression simulation, T = 80'C . . . . . . . . . . . . . .

Uniaxial compression

Uniaxial compression

Uniaxial compression

Uniaxial compression

Uniaxial compression

Uniaxial compression

Uniaxial compression

Uniaxial compression

4-26 Uniaxial compression

simulation, T = 90 C . .

simulation, T = 100 C .

simulation, T = 110 C .

simulation, 6 = -.005/s . .

simulation, 6 = -.01/s . .

simulation, 6= -.05/s

simulation, 6 = -.1/s . . . . .

simulation, 6 = -. 5/s . . . . .

simulation, 6 = -1.0/s . .

4-27 Plane strain compression simulation, T = 80 C

16

160

163

164

165

167

169

169

170

170

171

172

173

174

175

176

180

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

180

. 181

181

182

182

183

183

. 184

184

185



4-28 Plane strain compression simulation, T = 90'C . . . . . . . . . . . .

4-29 Plane strain compression simulation, T = 100 C . . . . . . . . . . .

4-30 Uniaxial compression simulation, T = 90 C, enlarged . . . . . . . . .

4-31 Uniaxial compression simulation, e = -.05/s, enlarged . . . . . . . . .

4-32 PETG Uniaxial compression, comparing simulation with experiment,

T = 80 'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-33 PETG Uniaxial compression, comparing simulation with experiment,

T = 90 0C . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . .

4-34 PETG Uniaxial compression, comparing simulation with experiment,

T = 100 . .C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

4-35 PETG Uniaxial compression, comparing simulation with experiment,

T = 110 .C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

4-36 PETG Plane strain compression, comparing

ment, T = 80C.......... . . . . . .

4-37 PETG Plane strain compression, comparing

ment, T = 90 C . . . . . . . . . . . . . . .

4-38 PETG Plane strain compression, comparing

ment, T = 100 C . . . . . . . . . . . . . . .

4-39 PETG Uniaxial compression error values . .

4-40 PETG Plane strain compression error values

simulation with experi-

. .. . . . . . . . . . . .

simulation with experi-

. . . . . . . . . . . . . .

simulation with experi-

185

186

186

187

187

188

188

189

189

190

190

192

192

4-41 PETG Network stretch-flow stretch, uniaxial compression, T = 90 C,

experimental data alone . . . . . . . . . . . . . . . . . . . . . . . . .

4-42 PETG Network stretch-flow stretch, uniaxial compression, T = 90 C

4-43 PETG Network stretch-flow stretch, uniaxial compression, T = 100 C

4-44 PETG Network stretch-flow stretch, uniaxial compression, T = 110 C

4-45 PETG Network stretch-flow stretch, plane strain, T = 90'C . . . . .

4-46 PETG Network stretch-flow stretch, plane strain, T = 100 C . . . .

4-47 Uniaxial compression simulation, T = 80'C . . . . . . . . . . . . . .

4-48 Uniaxial compression simulation, T = 90 C . . . . . . . . . . . . . .

4-49 Uniaxial compression simulation, T = 100'C . . . . . . . . . . . . .

193

193

194

194

195

195

198

199

199

17



4-50

4-51

4-52

4-53

4-54

4-55

4-56

4-57

4-58

4-59

Uniaxial compression simulation, T = 110 C . . . .

Uniaxial compression simulation, S = -.005/s . . . . .

Uniaxial compression simulation, = -.01/s . . . . .

Uniaxial compression simulation, =-.05/s . . . . .

Uniaxial compression simulation, e = -. 1/s . . . . . .

Uniaxial compression simulation, S = -.5/s . . . . . .

Uniaxial compression simulation, = -1.0/s.....

Plane strain compression simulation, T = 80 C

Plane strain compression simulation, T = 90 C

Plane strain compression simulation, T = 100 C

4-60 PETG Uniaxial compression, comparing simulation with

T = 80 C . . . . . . . . . . . . . . . . . . . . . . . . ..

4-61 PETG Uniaxial compression, comparing simulation with

T = 90 C . . . . . . . . . . . . . . . . . . . . . . . . . .

4-62 PETG Uniaxial compression, comparing simulation with

T= 100.C . . ...........................

4-63 PETG Uniaxial compression, comparing simulation with

T=11o .C.. ...........................

.200

.200

.201

.201

.202

.202

.203

.203

.204

.204

experiment,

experiment,

experiment,

experiment,

205

205

206

206

4-64 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 80 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4-65 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 90 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4-66 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4-67 PETG Uniaxial compression error values with flow cutoff . . . . . . . 208

4-68 PETG Plane strain compression error values with flow cutoff... ... 210

4-69 PETG Network stretch-flow stretch, uniaxial compression, T = 90 C 210

4-70 PETG Network stretch-flow stretch, uniaxial compression, T = 100 C 211

4-71 PETG Network stretch-flow stretch, uniaxial compression, T = 110 C 211

4-72 PETG Network stretch-flow stretch, plane strain compression, T = 90 C212

18



4-73 PETG Network stretch-flow stretch, plane strain compression, T =

100C..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-74 Extracting data for viscosity calculation . . . . . . . . . . . . ... . ..

4-75 Stress-strain rate and viscosity-strain rate curves, PETG uniaxial com-

pression, T=90 C, s = 1.0 . . . . . . . . . . . . . . . . . . . . . . . .

4-76 PETG Uniaxial compression, viscosity versus strain rate on a log-log

plot, T=90'C,cE = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . .

4-77 PETG Uniaxial compression, stress versus strain rate and viscosity

versus strain rate on a log-log plot, T=90 C . . . . . . . . . . .. . .

4-78 PETG Uniaxial and plane strain compression, stress versus strain rate

and viscosity versus strain rate on a log-log plot, T=90 C . . . . . .

4-79 Schematic illustrating the 8-chain model . . . . . . . . . ... . . . . .

4-80 Illustration of the unit cube and the angles between a chain and the

principal axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-81 Relation between stretch and orientation angle parameters . . . . . .

4-82 Affine versus pseudo-affine deformation . . . . . . . . . . . . . . . . .

4-83 Stress versus maximum angle, PETG uniaxial and plane strain com-

pression, T=90 C . . . . . . . . . . . . . . . . . . . . . . .. . . . . .

4-84 Stress versus strain rate, PETG uniaxial and plane strain compression,

T=90 C . . . . . . . . . . . . . . . . . . . . . . .

4-85 Viscosity versus strain rate, log-log plot, PETG

strain compression, T=90 C . . . . . . . . . . . .

4-86 Uniaxial compression simulation, T = 80 C . . .

4-87 Uniaxial compression simulation, T = 90 C . . .

4-88 Uniaxial compression simulation, T = 100 C

4-89 Uniaxial compression simulation, T = 110 C

4-90 Uniaxial compression simulation, s = -.005/s . . .

4-91 Uniaxial compression simulation, 6 = -.01/s . . .

4-92 Uniaxial compression simulation, 6 = -.05/s . . .

4-93 Uniaxial compression simulation, 6 = -. 1/s . . . .

. . . . . . . . . . 220

uniaxial and plane

.. . . . . . . . . . 221

.. . . . . . . . . . 224

.. . . . . . . . . . 225

.. . . . . . . . . . 225

.. . . . . . . . . . 226

.. . . . . . . . . . 226

. . . . . . . . . . . 227

.. . . . . . . . . . 227

.. . . . . . . . . . 228

19

212

214

214

215

215

216

217

217

219

219

220



4-94 Uniaxial compression simulation, 9&= -. 5/s . . . . . . . .

4-95 Uniaxial compression simulation, c = -1.0/s . . . . . . .

4-96 Plane strain compression simulation, T = 80'C . . . . .

4-97 Plane strain compression simulation, T = 90 C . . . . .

4-98 Plane strain compression simulation, T = 100 C . . . .

4-99 PETG Uniaxial compression, comparing simulation with

T= 800C...............................

4-100 PETG Uniaxial compression, comparing simulation with

T = 90 0C . . . . . . . . . . . . . . . . . . . . . . . . . .

4-101 PETG Uniaxial compression, comparing simulation with

T = 100 C . . . . . . . . . . . . . . . . . . . . . . . ..

4-102 PETG Uniaxial compression, comparing simulation with

T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . .

4-103 PETG Plane strain compression, comparing simulation

experiment,

experiment,

experiment,

experiment,

with experi-

m ent, T = 800 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-104 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 90 'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-105 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-106 PETG Uniaxial compression error values with flow cutoff and viscosity

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-107 PETG Plane strain compression error values with flow cutoff and

viscosity representation . . . . . . . . . . . . . . . . . . . . . . . . . .

4-108 Stress-strain curves from Doi-Edwards model . . . . . . . . . . . . .

4-109 Log viscosity versus log strain rate curves from Doi-Edwards model .

4-110 Log viscosity versus log strain rate curves from Doi-Edwards model,

compared with the proposed model . . . . . . . . . . . . . . . . . . .

5-1 Schematic representation of the constitutive model . . . . . . . . . .

20

228

229

229

230

230

231

231

232

232

233

233

234

234

236

242

243

243

246



5-2 PET Uniaxial compression, comparing simulation with experiment, T

= 80 'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5-3 PET Uniaxial compression, comparing simulation with experiment, T

= 90 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5-4 PET Uniaxial compression, comparing simulation with experiment, T

= 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5-5 PET Uniaxial compression, comparing simulation with experiment, T

= 110'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5-6 PET Plane strain compression, comparing simulation with experiment,

T = 800C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5-7 PET Plane strain compression, comparing simulation with experiment,

T =90'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5-8 PET Plane strain compression, comparing simulation with experiment,

T = 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5-9 Uniaxial compression error values for PET using PETG constants . . 254

5-10 Plane strain compression error values for PET using PETG constants 256

5-11 PET Uniaxial compression, comparing simulation with experiment, T

=90C . . . . ... .................................. 257

5-12 PET Uniaxial compression, comparing simulation with experiment, T

= 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5-13 PET Uniaxial compression, comparing simulation with experiment, T

= 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5-14 PET Plane strain compression, comparing simulation with experiment,

T = 90 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5-15 PET Plane strain compression, comparing simulation with experiment,

T = 100 'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5-16 PET Uniaxial compression error values using fit constants . . . . . . 260

5-17 PET Plane strain compression error values using fit constants . . . . 261

6-1 Schematic illustrating the orientation angle parameter . . . . . . . . . 264

21



6-2 Kinematical description of elastic-plastic decomposition . . . . . . . . 265

6-3 Elastic-plastic decomposition for a polycrystalline material . . . . . . 266

6-4 Elastic-plastic decomposition for a polymeric material . . . . . . . . . 267

6-5 Comparing two elastic-plastic decomposition microstructural pictures 267

6-6 Unit cell for the orthotropic model . . . . . . . . . . . . . . . . . . . 268

6-7 Kinematics involved in incorporating the anisotropic model . . . . . . 271

6-8 Uniaxial compression simulation, T = 80 C . . . . . . . . . . . . . . 275

6-9 Uniaxial compression simulation, T = 90 C . . . . . . . . . . . . . . 276

6-10 Uniaxial compression simulation, T = 100 C . . . . . . . . . . . . . 276

6-11 Uniaxial compression simulation, T = 110 C . . . . . . . . . . . . . 277

6-12 Uniaxial compression simulation, e = -. 005/s . . . . . . . . . . . . . . 277

6-13 Uniaxial compression simulation, S = -. 01/s . . . . . . . . . . . . . . 278

6-14 Uniaxial compression simulation, 5 = -.05/s . . . . . . . . . . . . . . 278

6-15 Uniaxial compression simulation, e5= -. 1/s . . . . . . . . . . . . . . . 279

6-16 Uniaxial compression simulation, 5 -.5/s . . . . . . . . . . . . . . . 279

6-17 Uniaxial compression simulation, S = -1.0/s . . . . . . . . . . . . . . 280

6-18 Plane strain compression simulation, T = 80 C . . . . . . . . . . . . 280

6-19 Plane strain compression simulation, T = 90 C . . . . . . . . . . . . 281

6-20 Plane strain compression simulation, T = 100 C . . . . . . . . . . . 281

6-21 PETG Uniaxial compression, comparing simulation with experiment,

T = 8 0 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

6-22 PETG Uniaxial compression, comparing simulation with experiment,

T = 9 0'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

6-23 PETG Uniaxial compression, comparing simulation with experiment,

T=100C . . . . . . ................................ 283

6-24 PETG Uniaxial compression, comparing simulation with experiment,

T= 110'C.... .... ................................ 283

6-25 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 80'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

22



6-26 PETG Plane strain compression, comparing simulation with experi-

m ent, T =90 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6-27 PETG Plane strain compression, comparing simulation with experi-

m ent, T = 100'C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6-28 PETG Uniaxial compression error values using anisotropic model . .

6-29 PETG Plane strain compression error values using anisotropic model

284

285

287

287

The reheat stretch blow Molding process . . . . . . . . . . . . . . . . 290

Preform used for bottle simulations . . . . . . . . . . . . . . . . . . . 293

Finite element mesh for bottle simulations . . . . . . . . . . . . . . . 294

Boundary condition (1) . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Boundary condition (2) . . . . . . . . . . . . . .. . . . . . . . . . . . 295

Deformed shape, T = 100 C . . . . . . . . . . . .. . . . . . . . . . 299

Orientation parameter, T = 100 C . . . . . . . . . . . . . . . . . . . 300

Shear rate, T = 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Orientation parameter, T = 100 C . . . . . . . . . . . . . . . . . . . 301

Shear rate, T = 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Chain Stretch, T = 100 C..... . . . . . . . . . . . . . . . . . . . 302

Temperature profile for blow molding simulation . . . . . . . . . . . . 302

Deformed shape, temperature profile . . . . . . . . . . . . . . . . . . 303

Orientation parameter, temperature profile . . . . . . . . . . . . . . . 303

Shear rate, temperature profile . . . . . . . . . . . . . . . . . . . . . . 304

Orientation parameter, temperature profile . . . . . . . . . . . . . . . 304

Shear rate, temperature profile . . . . . . . . . . . . . . . . . . . . . . 305

Chain Stretch, temperature profile . . . . . . . . . . . . . . . . . . . . 305

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

7-21

7-22

306

306

307

308

23

Finite element simulation, blowing inside a mold, temperature=90 C

Pressure-time curve for the simulation shown in figure 7-19 . . . . . .

Finite element simulation, axial stretch rod, temperature profile . . .

Pressure-time curve and displacement-time curve for the simulation

shown in figure 7-21 . . . . . . . . . . . . . . . . . . . . . . . . . . ..



A-1 Coordinate system for polar angle conversion . . . . . . . . . . . . . . 316

24



List of Tables

4.1 PETG Error values for uniaxial and plane strain compression simulations191

4.2 PETG Error values for uniaxial and plane strain compression simula-

tions with flow cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.3 PETG Error values for uniaxial and plane strain compression simula-

tions with flow cutoff and viscosity representation . . . . . . . . . . . 235

5.1 Error values for PET using PETG constants . . . . . ... . . a.......255

5.2 Material constants for PETG and PET . . . . . . . . . . . . . . . . . 257

5.3 Error values for PET using fit constants . . . . . . . . . . . . . . . . 260

6.1 PETG Error values for uniaxial and plane strain compression simula-

tions using anisotropic model . . . . . . . . . . . . . . . . . . . . . . 286

25



0.1 Notation

Symbol Description Used

a Length of a primitive chain segment Eqn. 4.53

a Length of one side of the anisotropic unit cell p. 268

a Vector representing one side of the anisotropic unit cell p. 268

a Fitting exponent in Ogden model p. 50

a Pressure coefficient Eqn. 4.13

amax Maximum angle between chain and principal axes Eqn. 4.44

amin Orientation parameter (complement of amax) Eqn. 4.45

ac Critical orientation where molecular relaxation ceases Eqn. 4.47

ao Orientation angle prior to deformation Eqn. 4.47

b Length of one side of the anisotropic unit cell p. 268

b Vector representing one side of the anisotropic unit cell p. 268

B Bulk modulus Eqn. 4.25

BN Left Cauchy-Green tensor, network, resistance B Eqn. 4.17

#3) Inverse Langevin function of p(')/N Eqn. 6.5

op Inverse Langevin function of P/N Eqn. 6.6

c Number of molecules per unit volume Eqn. 4.53

c Length of one side of the anisotropic unit cell p. 268

c Vector representing one side of the anisotropic unit cell p. 268

C Coefficient in Bergstrom-Boyce reptation model Eqn. 4.21

C Right Cauchy-Green strain tensor Eqn. 6.4

CF Right Cauchy-Green tensor, flow, resistance B Eqn. 6.18

001 Coefficient in Mooney-Rivlin equation p. 50

C10 Coefficient in Mooney-Rivlin equation p. 50

D Temperature Coefficient Eqn. 4.22

DP Plastic rate of stretching in resistance A Eqn. 4.7

f) Plastic rate of stretching in resistance B Eqn. 4.16

6ij Kronecker delta Eqn. B.3
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Description

Young's modulus

Lagrangian strain field

True strain

Viscosity

Deformation gradient

Elastic deformation gradient

Viscous deformation gradient

Deformation gradient in resistance A

Elastic deformation gradient in resistance A

Plastic deformation gradient in resistance A

Deformation gradient in resistance B

Network deformation gradient in resistance B

Flow deformation gradient in resistance B

Temperature dependent coefficient in power-law relaxation

Factor in Doi-Edwards model

Activation energy

Shear strain

Pre-exponential factor

Plastic shear rate in resistance A

Plastic shear rate in resistance B

Temperature dependent coefficient in power-law relaxation

First strain invariant

Second strain invariant

Identity tensor

Volume change in resistance A

Volume change in resistance B

Boltzmann's constant

Contour length

Velocity gradient in resistance A

Used

Eqn. 4.25

p. 269

Eqn. 4.9

Eqn. 4.40

Eqn. 4.1

p. 237

p. 237

Eqn. 4.1

Eqn. 4.3

Eqn. 4.3

Eqn. 4.1

Eqn. 4.14

Eqn. 4.14

Eqn. 4.44

Eqn. 4.50

Eqn. 4.12

Eqn. 4.40

Eqn. 4.12

Eqn. 4.8

Eqn. 4.18

Eqn. 4.45

p. 50

p. 50

p. 269

Eqn. 4.11

Eqn. 4.17

Eqn. 4.12

Eqn. 4.53

Eqn. 4.6



Symbol

Le

LB

LNI

i4
2-1A e

AI, A2 , A3

Ak

AN

AF

AT

ANC

A*

A*,

a

A*n

A*

Aa

Ac

mt

M

Ma

m(t)

M
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Description

Elastic velocity gradient in resistance A

Plastic velocity gradient in resistance A

Velocity gradient in resistance B

Elastic velocity gradient in resistance B

Plastic velocity gradient in resistance B

Inverse Langevin function

Fourth order tensor of elastic constants

Stretch

Principal stretches

Relaxation time

Network stretch in resistance B

Flow stretch in resistance B

Total stretch

Critical network stretch

Strain rate dependence of critical network stretch

Fitting parameter for strain rate dependence of ANC

Fitting parameter for strain rate dependence of ANC

Fitting parameter for strain rate dependence of ANC

Stretch along the material axis a

Stretch along the material axis b

Stretch along the material axis c

Temperature dependence of critical network stretch

Power-Law model strain-rate sensitivity coefficient

Fitting parameter for temperature dependence of ANC

Fitting parameter for temperature dependence of ANC

Fitting parameter for temperature dependence of INC

Memory function

Linearization of flow stress plot

Used

Eqn. 4.7

Eqn. 4.7

Eqn. 4.15

Eqn. 4.16

Eqn. 4.16

Eqn. 4.17

Eqn. 4.11

p. 50

p. 50

Eqn. 1.1

Eqn. 4.17

Eqn. 4.21

p. 178

Eqn. 4.36

Eqn. 4.37

Eqn. 4.38

Eqn. 4.38

Eqn. 4.38

Eqn. 6.6

Eqn. 6.6

Eqn. 6.6

Eqn. 4.37

Eqn. 4.42

Eqn. 4.38

Eqn. 4.38

Eqn. 4.38

Eqn. 1.1

Eqn. 4.30
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Description

Shear modulus

Relaxation modulus

Shear modulus in the glassy regime

Shear modulus in the rubbery regime

Power law exponent

Number of error points

Number of rigid links between entanglements

Normalized deviatoric stress in resistance A
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Chapter 1

Introduction

Poly(ethylene terephthalate) (PET) is widely used in many high-volume commercial

and consumer applications. Examples include films, fibers, and food containers such

as soda bottles. The widespread success in using PET for these applications has been

attributed to the ability of PET to crystallize upon deformation at the temperatures

and strain rates used during processing. This strain- or stress-induced crystallization

increases the density of the material, increases its resistance to gas permeability, aids

in long term dimensional stability, and imparts anisotropy to the final product. A

consequence of anisotropy is increased stiffness and strength of the polymeric product

in certain preferential directions. An example is increased tensile strength along the

axis of a drawn fiber. Poly(ethylene terephthalate)-glycol (PETG), a non-crystallizing

amorphous copolymer of PET, does not occupy the same industrial niche as PET,

precisely because it lacks the ability to undergo strain-induced crystallization. In-

stead, its uses are directed toward applications involving large, thermoformed parts,

such as point-of-purchase display panels or vending machine faces.

As PET continues to be used in manufacturing processes, a cost-motivated need

arises for ways to predict material behavior a priori, both in terms of material be-

havior during processing, as well as end product mechanical behavior. Essentially,

mechanical engineers must be able to simulate an entire manufacturing process nu-

merically, using a method such as finite element analysis. This enables them to know

the processing parameters (temperatures, pressures, loads, and strain rates) required
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to produce a valid part before costly molds are cut or even more expensive equipment

is purchased.

Current models of the deformation behavior of PET under processing loading

conditions span a range in level of detail and scope. Largely, constitutive models for

the finite strain stress-strain behavior of PET and many polymers are based on curve

fits to small sets of data (for instance at one strain rate over a range of temperatures)

and the validity of these models outside of the initial experimental parameters must

be questioned. Particular areas of difficulty are the overall behavior of polymers at

very large deformations, their strong dependence on rate and temperature, and the

incorporation of strain-induced crystallization effects into the models.

This thesis aims to make progress in some of these areas by better understanding

the effects of strain rate, strain state, temperature, and crystallization through me-

chanical experiments. That understanding is then applied to developing a constitutive

model based on the underlying physical mechanisms. By conducting experiments on

PET and a non-crystallizing copolymer, poly(ethylene terephthalate-glycol) (PETG),

effects of crystallization on the stress-strain behavior can be isolated. Uniaxial and

plane strain compression experiments have been conducted on these two polymers,

with specific emphasis on the temperature region just above the glass transition.

Temperature and strain rate were varied to obtain a large sampling of the mechanical

behavior of the polymers. Compression experiments allowed for obtaining a uniform

sample temperature and for controlling true strain rate during the experiments. Ex-

periments at constant true strain rate were conducted to capture the inherent material

response to the deformation. These results are presented in Chapters 2 and 3.

A constitutive model for the temperature and rate dependent stress-strain behav-

ior above the glass transition temperature has been developed specifically for PETG.

Details of this development are given in Chapter 4. The model represents the ma-

terial's resistance to deformation as two resistances in parallel, an intermolecular

resistance to flow, and a resistance due to molecularnetwork stretch and orientation.

A new reptation model is developed to account for molecular relaxation which occurs

as the polymer deforms at high temperatures. The model for molecular relaxation
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incorporates an internal state variable to monitor molecular orientation using an ori-

entation angle parameter which evolves with deformation. This model is compared

with classical results of Doi and Edwards (1986). In Chapter 5 this constitutive model

is adapted to fit the behavior of PET, showing those areas where strain-induced crys-

tallization may play a role. Chapter 6 expands on further modelling developments

incorporating an evolving anisotropy of the relaxed configuration or 'natural state' of

the polymer.

A final section in this thesis includes results from finite element simulations using

the model presented in chapter 4. In these simulations parameters such as tempera-

ture, pressure, and stretch rod history are varied to show the effect of each processing

parameter on the simulation output. Results are qualitatively compared with actual

bottle blowing experiments.

1.1 Experimental Background

The mechanical behavior of PET has been extensively studied over the years. From

early drawing experiments by Marshall and Thompson (1954) to modern in situ FTIR

and WAXS experiments on PET films (see, for example Middleton, et al. (2001)), PET

has remained a popular topic for research as its industrial prominence has grown. Yet,

in spite of the large quantity of literature relating to experimental characterization

of PET, many aspects of its mechanical behavior remain elusive. Strain-induced

crystallization is the principal feature which has both created the industrial niche for

PET and has simultaneously kept the attention of fifty years of experimentalists.

Early work by Flory (1947, 1956) on stretch-induced and equilibrium crystalliza-

tion in polymers was followed by experimental work of Thompson (1959), in which

fibers were drawn between rollers over a hot plate. Significant differences in crys-

tallinity and birefringence were observed depending on the thermal and mechanical

history of the fibers. Attempts to develop a theory for this observed behavior asso-

ciated crystallization with a strain hardening process which was independent of time

and temperature. This theoretical approach was unsuccessful at capturing the be-
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Figure 1-1: Crystal structure of PET (from Daubeny, Bunn, and Brown (1954))

havior of the PET fibers, but the idea that crystallization causes strain hardening has

remained a common thread in work on PET. About the same time as Thompson's

work, Daubeny, Bunn, and Brown (1954) published results of x-ray studies on PET.

This paper detailed the triclinic crystal structure of PET, including the dimensions

of the crystal, and commented on morphological explanations for such behavior as

the high melting point of PET. The triclinic crystal structure is shown in figure 1-1

and the pertinent crystallographic planes are shown in figure 1-2. The dimensions of

the unit cell are a=4.56 A, b=5.94 A, c=10.75 A, a = 98.5 , / =118 , and m =
112 (deP. Daubeny et al. 1954).

During the next twenty years, research on PET sampled various aspects of its

behavior, focusing on measuring and understanding the role of molecular orientation

in the polymer's deformation behavior. Work by Ward and Pinnock centered on the

evolution of molecular orientation in PET during stress-relaxation experiments and

the correlation with stress-optical relations (1966). Other work of Foot and Ward

investigated the effect of initial orientation on drawing behavior by observing the
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Figure 1-2: Crystallographic planes of a PET crystal (from Llana (1998))

material's natural draw ratio (Ward 1967; Foot and Ward 1975). They found that

the natural draw ratio was dependent on the initial molecular orientation and that

a correlation existed between the draw ratio and the degree of final molecular align-

ment. Purvis, Bower, and Ward applied polarized Raman scattering to determine the

molecular orientation of PET films and fibers (Purvis et al. 1973; Bower and Ward

1982). De Vries, Bonnebat, and Beautemps (1977) conducted a wide range of uni-

and biaxial extension experiments on polymer films, including on PET. They looked

specifically at the effect of molecular orientation (as determined through birefringence

measurements) on such mechanical properties as modulus, tensile strength, and im-

pact resistance. They observed an approximately linear relation between Young's

modulus and birefringence and observed an increase in tensile strength with orienta-

tion. Duckett, Rabinowitz, and Ward (1970) looked at the effect of strain rate and

temperature on yielding of PET. Yield stress was found to increase monotonically

with increasing strain rate and with decreasing temperature, as shown in figure 1-3.

Note that the glass transition and melting temperatures of PET are approximately

80 C and 270 C, respectively.

It wasn't until the mid 1970's that the emphasis on PET research returned to

crystallization. Siegmann (1980) studied melt crystallization of PET, including the
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Figure 1-3: Tensile yield stress of PET (from Duckett, et al. (1970))

effect of pressure on the developed crystallinity. Two types of crystal morphology

were observed: folded-chain crystals and extended chain crystals. The thin folded-

chain lamellae were observed to be in the range of 90-150 A and the extended chain

lamellae were found with striated surfaces, up to several microns thick. Sun, Pereira,

and Porter (1984) invested crystallization kinetics of cold extruded PET. They found

that crystallization temperature decreased, crystallization rate rapidly increased, and

activation energy decreased with the final draw ratio of the sample. Roland and

Sonnenschein (1991) performed drawing experiments on PET near the glass transition

to determine the molecular-weight dependence of crystallization. They found that the

molecular configuration associated with the onset of strain-induced crystallization was

independent of molecular weight.

A paper by Bellare, Cohen, and Argon (1993) looked at the development of crys-

tallographic texture in initially semicrystalline PET as a function of deformation.

They observed an initially spherulitic morphology, approximately 20 pm in diame-

ter, which began to evolve as samples were deformed above a compression ratio of

1.8. At higher deformations, the spherulites became elongated, orienting toward the

flow direction. The crystallographic texture within the spherulites also evolved as the
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samples were further deformed, into stacks of fragmented crystalline lamellae. These

lamellae were oriented toward the flow direction, as well. This oriented morphology

led to an orthotropic symmetry in the final material samples.

Lee, et al. (1996) investigated the isothermal crystallization of PET at 110 C

using small angle x-ray scattering. They observed 3 stages of crystallization: (1)

thin lamellae are dispersed in a disordered array, (2) new lamellae become inserted

between existing lamellae to start forming a stack, and (3) stacks then grow rapidly.

A schematic representing these stages in the development of a spherulite in PET is

shown in figure 1-4. In all three stages, the observed lamellae had a nearly constant

thickness of 2.3 nm, initially dispersed in an isolated domain on the order of 20 nm

in radius. This domain was seen to grows linearly with time and formed the basis of

the lamellar sections in the evolving spherulitic morphology. A paper by Jog (1995)

presents a review of crystallization in PET, including isothermal crystallization, which

is modeled using the Avrami equation, and strain induced crystallization. Isothermal

crystallization is often quantified in terms of a crystallization rate, which experiences

a maximum around 174 C, at which point the crystallites can most easily nucleate

and grow. At higher temperatures, it is difficult for stable crystallites to form and

at lower temperatures, molecular mobilitiy is substantially decreased. Strain-induced

crystallization is observed to occur at much higher rates (by an order of magnitude)

than crystallization from an isotropic, amorphous state. During deformation pro-

cessing, PET develops a metastable molecular ordering, which proceeds to crystallize

under appropriate environmental conditions. The structure of the crystallites is of-

ten referred to as a shish kebab structure, or fully extended chain crystals. The

crystallization process involves rotation, alignment, and perfection of the crystalline

regions. During annealing of ordered PET samples, the initial orientation factor and

temperatures at deformation and during annealing are the most important factors in

crystallization rate and degree of crystallinity obtained.

Buckley and Salem (1987) performed low-strain, high temperature heat treatment

on PET fibers to look at crystallization behavior. They observed a high temperature

mechanical relaxation in semicrystalline PET which they associated with entangle-
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Figure 1-4: Evolution of Crystal Structure in PET (from Lee, et al. (1996))

ment slippage. The position of this a' relaxation was found to be highly sensitive to

the thermomechanical history of the sample.

Several groups have looked at the effect of annealing on PET after deformation.

Fischer and Fakirov (1976) annealed both undrawn and drawn PET to observe the de-

velopment of crystallinity at various annealing temperatures. Misra and Stein (1979)

conducted research specifically looking at stress-induced crystallization in PET drawn

near the glass transition temperature. In this work, crystallinity was determined us-

ing density, WAXD and Small angle light scattering experiments. They observed

that crystallinity increased in the deformed material when it was subsequently an-

nealed. A rod-like crystal structure which developed during drawing later evolved

into spherulites during this annealing process. All of their experiments were on PET

drawn at one strain rate. Greener et al. (1995) performed a study on heatsetting of

oriented PET films. In their work, they remarked that crystallinity increases linearly

with heatset temperature. Additionally, WAXD patterns were observed to sharpen

with increasing heatset temperature and crystallite size and in-plane crystalline orien-

tation also increased with heatset temperature. Figure 1-5 shows how the crystallite

size varied with heatset temperature, from approximately 35 A at a heatset temper-
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Figure 1-5: Crystallite size versus heatset temperature (from Greener, et al. (1995))

ature of 90 C to double that at a heatset temperature of 240 C.

Another group looking at crystallization kinetics in PET fibers was Peszkin and

Shultz (1986). They annealed PET fibers at temperatures ranging from 100' C to

200 C and under a small tensile force (2 to 5 g) and observed through shrinkage

and birefringence measurements that a competition existed between chain-recoiling

and crystallization. They found that crystallization kinetics increased with higher

temperatures and higher tension. Also, chain orientation was found to increase with

tension. Petermann and Rieck (1987) looked at the effect of annealing on crystallinity

in PET. Their results indicated that a higher annealing temperature led to greater

crystallinity and orientation, higher tensile strength and tensile modulus, but lower

elongation at break. They observed a micellar morphology.

Rietsch, Duckett, and Ward (1979) studied the tensile drawing behavior of PET at

temperatures ranging from 20 C to 80 C. Cold drawn PET was observed to neck at

a natural draw ratio of 4.3, which to a good approximation is independent of rate and

temperature (elongation rates ranged from 0.05 cm/min to 5 cm/min, with a sample

gage length of 4.75 mm). Hot-drawn PET, on the other hand, was observed to deform
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homogeneously. Sweeney, et al. (1999) looked at applying a necking criterion to the

behavior of PET. They concluded that necking would occur in PET below 60 C and

would not occur above 80 C. They also noted that in intermediate temperatures,

necking would occur only at high strain rates. This is evidence of the rate-dependence

of the glass transition temperature.

Long and Ward (1991a, 1991b) looked at tensile drawing of PET and shrinkage

force studies. They found that by determining a network draw ratio, properties of

deformed PET could be correlated with different deformation histories. Gordon,

Duckett, and Ward (1994) similarly studied two-stage uniaxial and constant-width

stretching of PET. They observed that the results can be consistently interpreted

using a molecular network model.

Ajji and coworkers (1994) performed uniaxial tension experiments on PET films

at 80 C over a range of strain rates and to different final strains. They observed

from DSC measurements that crystallinity increased at an approximate draw ratio of

3. At higher strain rates, this draw ratio shifted to lower values. Similarly, Dargent,

Grenet, and Auvray (1994) used DSC and X-ray diffraction to monitor crystallization

in samples deformed at a strain rate of 0.14 sec- 1 and a temperature of 100 C. They

observed strain-induced crystallization to occur above a critical stretch of 2.8. They

also observed changes in melting, glass transition, and crystallization temperatures

with strain: melting temperature increased weakly with extension ratio, the glass

transition region became broader and shifted to increasing temperatures with exten-

sion, and the DSC crystallization peak shifted to lower temperatures with extension.

Salem (1994) conducted experiments over a range of strain rates (0.01 to 2.1

sec- 1 ) and temperatures above Tg (83 C to 96 C) to look at the relation between

crystallinity and the final draw ratio. Crystallinity was determined using density

measurements. It was found that lower strain rates delay the onset of crystallization

to higher draw ratios. Additionally, Salem observed that crystallinity versus log-

time curves could simply be shifted on top of one another. Clauss and Salem (1995)

observed orientation in uniaxially drawn PET. Experiments were performed at 90 C

and they observed that orientation develops faster at higher strain rates.
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Jabarin (1984) conducted biaxial experiments on PET in 1984 to look at the effect

of various parameters on birefringence. Results showed that molecular orientation

and mechanical properties of the drawn films were a strong function of strain rate,

final strain, molecular weight, and draw temperature. He found that for a given rate

and final strain level, birefringence decreased with increases in temperature. He also

determined that mechanical properties such as yield stress and ultimate tensile stress

were directly related to the level of molecular orientation in the tensile direction.

Cakmak, et al. (1986, 1987, 1989) biaxially stretched PET films above the glass

transition temperature to look at orientation and crystallinity. They observed that

crystallinity increased with increasing final stretch and with annealing and that the

crystal structure is perfected during annealing. They also found that in order to

attain the same level of molecular orientation at 100 C as at 80 C, the sample must

be stretched further. Le Bourvellec, et al. (1986, 1987) conducted similar experiments

also looking at orientation and crystallinity. Their results indicated that crystallinity

and crystallization kinetics depended on the degree of molecular orientation in the

polymer. This meant that PET deformed at higher temperatures crystallized more

slowly due to the fact that more molecular relaxation had occurred.

Matthews, et al. (1997) conducted biaxial drawing experiments on PET at 85 C

with the goal being to fit a constitutive model to the data. Strain rates ranging

from 0.5 sec-1 to 5.0 x 10 4 sec were used. They found that strain hardening

played a significant role in the stress-strain behavior beyond a draw ratio of about

2.2. Adams, Buckley, and Jones (1998) also conducted biaxial stretching experiments

on PET, looking at how yield stress varies with strain rate above the glass transition

temperature. In another paper (Adams et al. 2000), they extended their experiments

to a wider range of temperatures in order to develop a constitutive model for the

behavior of PET.

Dargent, et al. (1999) also performed stretching experiments on PET sheets to

look at both crystallinity (based on DSC measurements) and birefringence (based

on analysis of reflection-mode pole figures from spectroscopic measurements). They

found that crystallinity changed little after a draw ratio of 3.5, but that birefrin-
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gence continues to increase dramatically to much larger draw ratio. Matthews, et

al. (1999) conducted roll drawing experiments on PET at high temperatures (130 C

to 190 C). They found that the mechanical properties of the film were independent

of the draw temperature at a given draw ratio. They suggested that this is because

crystallinity increases with increasing temperature, but orientation decreases with

increasing temperature, and that the two competing effects lead to the temperature

independence.

A series of papers in 1992 by Clauss and Salem (Clauss and Salem 1992; Salem

1992a; Salem 1992b) and Jabarin (1992), looked at the relation between strain hard-

ening and crystallization in PET. In Salem's work (1992b) the rate-dependence of

crystallization in PET was investigated. He concluded from density measurements

and wide angle X-ray scattering data that crystallization begins at the inflection point

in the stress-strain curve and shifts to higher draw ratios and lower stress levels as

the strain rate decreases. He also observed that crystallite size increased with draw

ratio, crystallite sizes ranging from 2.5 to 4.0 nm. Jabarin (1992) also looked at rate-

dependence, along with temperature-dependence of crystallization, but found that

strain-induced crystallization occurred during stretching when samples were stretched

to a strain below the strain hardening region.

Chandran and Jabarin published a series of three papers (1993a, 1993b, 1993c) on

biaxial orientation of PET. In this work, a large series of experiments were performed

on PET biaxially stretched both sequentially and simultaneously. Experimental data

was reported for a variety of temperatures and strain rates, giving a solid founda-

tion for the features of the stress-strain curves in these deformation modes. Similar

experiments were performed by Gohil and Salem (1993) to look at the evolution of

orientation and mechanical properties in each direction. They observed some differ-

ence between sequentially versus simultaneously stretched films, specifically that after

a stretch of 2.7 in the second stretch direction, sequentially stretched chains begin to

realign in that direction.

Tassin, Vigny and coworkers (Tassin et al. 1999; Vigny et al. 1999) performed

sequential biaxial stretching experiments on PET followed by annealing. Specimens
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were stretched at temperatures ranging from 85 C to 115 C at a drawing speed of

0.75 sec- 1 in the first stretch direction. In the second stretch direction, stretching

temperatures of 105, 115, and 125 C were used and applied loads ranged from 15 to

25 MPa. Annealing was then done at 200 C for up to 20 sec. X-ray diffraction and

infrared dichroism were used to observe changes in crystallinity and orientation. They

found that crystallinity increased with increase in draw ratio and that crystallization

appeared at lower draw ratios for lower temperatures. Also, the chain axes were

more aligned with increasing draw ratio or decreasing temperature. Upon subsequent

stretching in the transverse direction, the crystals were found to rotate toward the

transverse direction.

In another paper by Salem (1995) he looked at the difference in crystallization

between tensile experiments at constant extension rate and those at constant strain

rate. He observed that crystallization onset is at shorter times and that crystallization

rate is higher for constant strain rate experiments. Salem (1998, 1999) conducted

further constant-force and constant-extension ratio experiments on PET to look at

orientation, crystallinity, and the development of microstructure. He found that much

of the deformation during roll drawing, took place in the range of the maximum strain

rate. In this range, the time available for molecular relaxation and crystallization is

short, which leads to higher orientation and lower crystallinity than in a constant

extension rate experiment. He also finds the same effect when drawing at lower

temperatures, where molecular relaxation and crystallization are less favored than

at high temperatures. Similar work by Lu and Hay(2001) gave the same results,

that increasing strain rate or decreasing temperature promoted crystallization and

orientation.

Guan, Saraf, and Porter (1987) compared biaxial stretching with uniaxial compres-

sion of PET. They found that in compression PET develops more planar orientation

and more strain induced crystallization than in biaxial stretching. Work by Guan, et

al. (1992) compared crystallization during biaxial stretching with uniaxial compres-

sion. Uniaxial compression resulted in more crystallization, however in both types of

experiments the draw rate was held constant, so that in extension the strain rate was
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decreasing during the experiment and in compression the strain rate was increasing.

In 1996, one research group began investigating the claim that strain-induced crys-

tallization occurs during drawing. Blundell, et al. (1996) published results of tensile

tests on PET in which x-ray patterns were recorded during the deformation process.

This paper, combined with subsequent papers (Blundell et al. 1999; Blundell et al.

2000; Mahendrasingam et al. 1999; Mahendrasingam et al. 2000) suggested that,

except in the case of quite slow experiments, strain-induced crystallization does not

occur until the moment when deformation stops. They suggest that the crystalliza-

tion which previous researchers had concluded was occuring during deformation, in

fact had occurred during the quench process. Later work by Schrauwen, et al. (2000)

confirmed the in situ experiments of Blundell, Mahendrasingam, et al. as they also

observed that PET did not show any crystallization during drawing.

Work by Kim, et al. (1997) looked at orientation in commercially produced films.

They observed that amorphous chains and crystallites are most fully aligned in the

center of the films, but near the edges are more poorly aligned. They also found that

crystallites tended to be more completely aligned in the film than the amorphous

chains, and suggested that this was because crystallites could more easily rotate and

align away from the first stretch direction and into the second stretch direction than

the amorphous chains. They found a strong dependence of the elastic modulus on

the orientation distribution of those amorphous chains.

Compression experiments, on the other hand, have been conducted by a few re-

searchers to look at the deformation behavior of PET. Zaroulis and Boyce (1997)

conducted one of the first such sets of experiments. This work was specifically fo-

cused in the glassy regime up to the glass transition temperature and looked at the

material behavior over a variety of strain rates, including both uniaxial compression

and plane strain compression experiments. Work by Llana and Boyce (Llana 1998;

Llana and Boyce 1999) continued this effort by adding substantial experimental re-

sults above the glass transition temperature, and by performing WAXD and DSC

experiments to look at crystallization as a function of temperature, rate, and strain

state. Their experiments were in the range of 90 C to 105 C and at strain rates
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Figure 1-6: Orientation of crystals in uniaxial compression (from Llana and
Boyce (1999))

ranging from -0.005 to -2.0 sec 1. They observed that the stress-strain behavior ex-

hibited a sequence of four characteristic features: (1) a relatively high initial stiffness,

(2) a rollover in the stress-strain curve to flow, (3) an increase in stress with con-

tinuing strain, (4) a dramatic increase in stress with strain at high strains. Each

depended strongly on strain rate, temperature, and strain state, and crystallinity was

found to increase with increasing strain rate and decreasing deformation temperature

in both uniaxial and plane strain compression. The crystallographic texture was ob-

served through WAXD measurements to be consistent with the molecular orientation

associated with each state of deformation, as shown in figures 1-6 and 1-7.

Vigny, et al. (1999) performed plane strain tensile tests on PET at 90 C for

purposes of developing a constitutive model which would incorporate crystallinity.

Gorlier, et al. (2000, 2001) performed video-controlled, constant strain rate tensile

experiments on PET. They observed that crystallinity developed much more rapidly
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when the samples were quenched more slowly. They suggest that crystallization is not

directly related to strain hardening but rather to the development of a mesophase.

G'Sell (2000) performed similar experiments above T9 to observe the dependence of

the stress-strain curves on strain rate.

Cole, Ajji, and Pellerin (2002) investigated the morphology of three cases of PET:

amorphous (quenched from the melt), drawn (at 80 C and 2 cm/min) and subse-

quently quenched, and annealed at various temperatures (100 C to 200 C) for up

to 24 h. Their results suggest that there is an intermediate stage of the material in

which it is highly ordered, but not as closely packed as in the crystalline material.

This intermediate stage is what results in strain induced crystallization.

The above summary of experimental literature related to PET illustrates the

scientific interest in its behavior. Experiments on isothermal crystallization, anneal-

ing, and heatsetting treatments have been designed to identify the crystallolgraphic

texture of PET. Other experiments have attempted to correlate deformation with
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microstructural quantities such as molecular order or crystallinity using a variety

of mechanical deformation histories combined with density, optical (birefringence),

x-ray, and thermal (DSC) methods to observe changes in the microstructure. Chal-

lenges continually arise using these approaches because of the difficulty of quenching

a sample quickly enough to remove the effects of crystallization during the brief an-

nealing after deformation. Most recently research efforts have tried to resolve these

issues by conducting simultaneous stretching and wide angle x-ray measurements.

This approach has further illucidated the subject of strain-induced crystallization, in-

dicating that at moderate to fast strain rates a meso-crystalline phase occurs during

stretching, but actual crystallite development is delayed until the deformation process

ceases. Once deformation halts, the crystallinity is seen to develop very rapidly (< 1

sec).

1.2 Constitutive Modeling Background

Constitutive modeling of the finite strain behavior of PET near the glass transition

temperature has been evolving to gradually incorporate more of the observed mechan-

ical behavior of the material. Some of these models have been developed strictly for

the purpose of simulating a process, in which case a quick phenomelogical fit to data,

a mathematically simple constitutive law, and a computationally efficient numerical

scheme have taken priority. Other resesarchers have focused on trying to understand

the underlying physics in order to develop a mechanistically based material model.

Much of the modeling of polymers relies on the concept of an underlying network of

polymer chains. In rubbers, this network is created by physical crosslinks between the

polymer molecules. In thermoplastic materials such as PET, this network is instead

created by physical entanglements. Since these entanglements are not a chemical

bond, there is the potential for chains to slip through their entanglements under an

applied load, a process often called reptation.

The theory of rubber elasticity has been addressed by many sources, such as

Treloar and Flory (Treloar 1975; Treloar 1976; Flory and Rehner 1943; Flory 1985).
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Initially, polymer chains were treated using Gaussian statistics, but it was observed

that as polymer chains were extended they eventually approached a limiting extensi-

bility, causing the stress to rise dramatically. This could not be accounted for using

Gaussian statistics, so in order to capture the behavior at very large stretches alter-

nate, non-Gaussian statistical methods had to be used (see, for example Wang and

Guth (1952) and Treloar (1975)).

The general approach to modeling rubbers is to treat them as hyperelastic materi-

als and to develop an expression for the strain energy function. In general, this strain

energy function is a function of the deformation gradient, but it is often simplified to

be a function of the scalar invariants of the right or left Cauchy-Green strain tensor,

or even of the principal stretch values. The strain energy function can then be differ-

entiated to yield an expression relating the Piola-Kirchhoff stress to the deformation

gradient.

Several models incorporate this approach phenomenologically. Treloar (1943) first

proposed the neo-Hookean form of the strain energy: W = 'M(I1 - 3). The Mooney-

Rivlin (Mooney 1940; Rivlin 1948) form, W = C10 (I, -3) + C01(12 - 3), incorporated

a dependence on the second invariant but only gave a marginally better fit to ex-

perimental data than the neo-Hookean form. Valanis and Landel (1967) developed a

strain energy function using the principal stretches, W = w(Ai)+w(A 2 )+w(A3 ). They

found that for shear, w = 2 k In A gave a good fit, but it was unable to adequately

capture state-of-strain dependence. Ogden (1972) developed an isotropic strain en-

ergy function using strain energy invariants, which also depended on the principal

stretches: W(a) = (A? + A' + A - 3)/a. The total strain energy is then the sum

of each of these invariants, weighted by a modulus, 1a: W = > p 0 W(a). This model

could be fit to data using as many different values of a as needed.

Other models for rubber elasticity took a more mechanistic approach to developing

a functional form for the strain energy. In these models, unit cells of a specific number

of chains were proscribed. The material was assumed to deform affinely, such that

the deformation of the unit cell and the resulting chain stretch was representative of

the whole material. A good review of such models is given in ref. (Boyce and Arruda
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2000). The main examples are the 3-chain, 4-chain, and 8-chain models. The 3-chain

model proposed by Wang and Guth (1952) gives good results for uniaxial deformation,

but is unable to capture other modes of deformation. The 4-chain model of Flory and

Rehner (1943) gives a slight strain-state dependence due to the cooperative motion of

the four chains, however the model is not symmetric with respect to principal stretch

space. Hence, the results depend on the orientation of the 4-chain tetrahedron.

The Arruda-Boyce 8-chain model (1993b), on the other hand, both contains sym-

metry with respect to principal stretch space, and captures the cooperative chain

motions associated with different deformation modes. It is therefore able to capture

the strain state dependence of the mechanical behavior over the whole range of strain.

Ball, Doi, Edwards, and coworkers (Ball et al. 1981; Edwards and Vilgis 1986)

began looking at the effect of entanglements in addition to crosslinks in rubber elastic-

ity. They developed expressions for the free energy associated with an entanglement

and began discussing concepts of a tube or primitive path, along which a polymer

chain is constrained to move. This was followed by the classical book of Doi and

Edwards (1986) which detailed the concept of reptation in polymer dynamics. This

book summarized and expanded on previous work by de Gennes (1979) and earlier

papers by Doi and Edwards (1978, 1980). Bergstrom and Boyce (1998) used the prin-

ciples of the Doi-Edwards model to model the large strain time-dependent behavior

of rubbers.

In models for thermoplastics, such as PET, which exhibit a huge rate and tem-

perature dependence, constitutive models are generally hyperelastic-viscoplastic in

nature. A model by Buckley, Jones, and Gerlach (Buckley and Jones 1995; Buckley

et al. 1996; Gerlach et al. 1998), for example, used a summation of bond-stretching

stress and conformational stress to account for the material behavior. The bond-

stretching portion employed linear elasticity and Eyring viscous flow. The conforma-

tional (entropic) portion made use of the Edwards-Vilgis model (1986). This model

was able to capture the change in behavior with temperature, from glassy behavior at

low temperatures to rubbery behavior at higher temperatures above the glass transi-

tion temperature. This general model was then fit to biaxial extension data for PET.
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They found that the model did very well at capturing the mid-strain range well, but

did not fare particularly well at capturing the initial yield stress nor the large strain

hardening at large extensions.

Dooling, et al. (1998) applied a similar model to PMMA, specifically trying to

model creep just below the glass transition temperature. They found their results to

be good for moderate time scales (up to 100 seconds), but found deviations at larger

times. The model was extended by Adams, et al. (2000) to account for strain-induced

crystallization in PET. This model was able to capture the experimentally observed

trends quite well, with the limitation that the model was fit to data at one extension

rate, and therefore its ability to capture strain-rate dependence is unclear.

In a model for PVC, Sweeney and Ward (1995) incorporated the Ball network

model with a rate dependence which allowed the number of sliplinks (a parameter in

the Ball model) to vary with strain rate. A similar approach was taken by Matthews

et al. (1997) for PET. They found that the model only worked well up to a draw ratio

of about 2.2 as it was unable to account for the strain hardening at large strain levels

in PET. A model by Vigny, et al. (1999) obtains a strain-rate sensitivity coefficient

from data from plane strain tensile tests on PET and uses this in a power-law type

viscoplastic element. They incorporate crystallinity by proscribing the number of

entanglements to increase as crystallization occurs.

A model by Boyce, Socrate, and Llana (2000) also took the deformation to be

composed of two parts: one due to intermolecular interactions and the other dueto

intramolecular or network interactions. The intermolecular part was composed of a

linear-elastic spring, and a viscous element which modeled yielding as a thermally acti-

vated process using an Arrhenius-type equation. The network part was composed of a

network spring element (the 8-chain model), and a viscous element which represented

reptation. The reptation element used was that of Bergstrom and Boyce (1998). The

model also attempted to incorporate strain-induced crystallization by identifying a

critical network stretch at which crystallization would occur. At this point, reptation

ceased and the shear resistance of the material began to increase. This model was able

to capture data over a wide range of temperatures and strain rates, but specifically
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the crystallization portion of the model was quite phenomenological.

This model was extended by Ahzi, et al. (2002) to explicitly include the contri-

bution of a crystalline phase to the overall response. This was done by treating the

intermolecular resistance as a composite framework with the crystalline and amor-

phous phases as two seperate resistances. The resistances were coupled through three

different analog representations: an upper bound, a lower bound, and a self-consistent

approach. Crystallization rate was expressed using a non-isothermal phenomenolog-

ical expression based on the modified Avrami equation and predicted results gave

good agreement with experimental results.

Another area of modeling for PET is from the perspective of the fluid mechanics

community. An extensive review of the field of non-Newtonian fluid mechanics can be

found in the books by Bird, et al. (1987, 1987). Doufas, McHugh, et al. have recently

published a series of papers on fiber spinning and film blowing of PET and other

polymers (Doufas et al. 1999; Doufas et al. 2000; Doufas et al. 2000; Doufas and

McHugh 2001b; Doufas and McHugh 2001a; McHugh and Doufas 2001). They use the

Giesekus model (Giesekus 1982; Wiest 1989) incorporating finite chain extensibility

for the amorphous polymer melt. They include a rate equation for crystallization

which reduces to the Avrami equation for quiescent conditions. Their crystallization

model employs a transformation over time of amorphous chain segments into a semi-

crystalline phase. That semi-crystalline phase is taken to consist of rigid rods which

orient in the flow direction. They obtain good comparison with experimental results,

but the model contains many empirical constants without physical meaning.

Work by Coppola, et al. (2001) on flow-induced crystallization modeled the be-

havior using the Doi-Edwards model with the Independent Alignment Approximation

(DE-IAA) combined with the Lauritzen-Hoffman equation for the crystallite nucle-

ation rate in polymers below their melting temperature. They found that, compared

with linear elastic dumbbells and FENE-P dumbbells, the DE-IAA model gave the

best overall agreement with data. They suggest that this is because crystallization

is enhanced more by the level of orientation of the dumbbells than by the amount of

stretch experienced by the dumbbells.
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1.3 Blow Molding Simulation Background

A few papers have experimentally investigated the bottle blowing process. Kim (1984,

1985) conducted reheat blow molding experiments with 2 liter PET bottles. The aim

was to look at the effect of preheat time and equilibration time on the morphological,

oxygen barrier, and overall bottle properties. Results showed that after preheating,

the bottle wall temperature was greater on the outer surface than the inner (as mea-

sured using Cu- constantan thermocouples); however, after 10 to 30 seconds of equili-

bration time, the inner surface temperature had increased and the outer decreased to

create optimal drawing conditions. Overall observations included that colder bottles

tend to pearl on the inner wall surface (indicating chain scission) and warmer bottles

tend to haze on the outer wall surface (due to spherulites developing). No clear trend

was seen in oxygen permeability.

Bonnebat, Roullet, and de Vries (1981) looked at the effect of molecular weight

on the stretch blow molding of PET. They found a significant effect, principally

because molecular weight influences the natural draw ratio of the polymer. They

conducted free blow experiments on PET with different molecular weights to observe

the longitudinal and transverse stretches versus bottle volume as a function of molec-

ular weight. They found that resins with lower molecular weight require thicker and

shorter preforms.

Axtell and Haworth (1994) looked at the strain rate and temperature dependence

of PET's rheological behavior in the range of blow molding simulations and plotted

the results using a stress-growth function (an alternative to elongational viscosity

which is used in cases where steady-state is not achieved and when elastic prop-

erties significantly affect the deformation process). They observed that the curves

(stress-growth function versus time on a log-log plot) all superposed up until a crit-

ical strain, which they associated with the onset of strain-induced crystallization.

They also looked at blow molding and commented that strain-induced crystallization

was essential in bottle formation, in that it imparted a uniform wall-thickness and

enhanced the physical properties of the molded bottles. They found that crystallinity
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increased with increasing blow pressure.

Venkateswaran, Cameron, and Jabarin (1998a) investigated the effect of varying

the temperature profile on the properties of reheat blown PET bottles. They found

that the tensile modulus decreased with increasing processing temperature, and that

the tensile energy absorption increased with increasing processing temperature. They

found a higher hoop-direction birefringence on the inner wall surface than the outer

surface. Bottle sidewall density and crystallinity increased with increasing processing

temperature, though the oxygen permeability was not significantly affected.

Cakmak, et al. (1984, 1985b, 1985a) looked at orientation in both commercial and

lab bottles. They found that 90 C produced more uniform orientation along the

bottle length than either 80 C or 100 C. They observed that higher pressure leads

to greater orientation and that the orientation is primarily equi-biaxial in nature.

Additionally, birefringence was greater on the inside surface than on the outside sur-

face of the bottle. In a set of experiments which looked at crystallinity in commercial

bottles, they observed that bottles contain a high level of crystallinity and that they

exhibit anisotropic mechanical behavior through the bottle wall thickness. This is

due to higher transverse stretching on the inner surface of the bottle.

Chung (1983) and Caldicott (1999) discussed the principles of preform design for

blow molding. In his paper, Chung discusses such design parameters as wall thickness,

and uses heat transfer arguments to specify maximum and minimum wall thickness

for a preform. Mold removal requires specific taper angles. Large stretch ratios are

needed so that the final product has sufficient molecular orientation to give it the

required strength and stiffness. He also noted that non-circular cross-sections create

added complications such as preform-mold alignment and non-uniform temperature

distribution issues. Caldicott suggests future design challenges for bottle blowing:

wide-mouth jars, higher temperature containers, pasteurized beer bottles, and so

forth.

Other experiments have been performed to study the extrusion blow molding pro-

cess. One example is work of Choi, Spruiell, and White (1989) in which they examined

orientation in blow-molded high and low density polyethylene bottles. They found
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that bottles tended to be thicker at the neck than the bottom due to gravitational

effects. The thickness of the bottles increased with decreasing temperature. Bottles

inflated at higher pressure were seen to have a more uniform thickness along the

length. In general, the birefringence of the bottles increased with increasing pressure

and decreasing temperature.

Axtell and Haworth (1993) looked at extrusion blow molding of PETG. They noted

that shear thinning behavior plus elongation stiffening made PETG a viable candidate

for extrusion blow molding. They looked at different factors which influenced parison

sag, such as output rate, melt temperature, and time.

Debbaut, Homerin, and Jivraj (1999) attempted to model extrusion blow molding

of HDPE using a Lodge rubberlike constitutive model (see Lodge (1964)). It essen-

tially consists of an integral viscoelastic constitutive equation in which the damping

function is neglected and the memory function takes the form of a sum of decreasing

exponential terms:

T f m(t - t')[C- 1 (t') - I]dt'

t N

-Z55[CT 1(t'--J]dt' (1.1)
k=1 k

where T is the stress tensor, m(t - t') is the memory function, Ct(t') is the right

Cauchy-Green strain tensor, I is the identity tensor, ry is a viscosity factor, and Ak is

a relaxation time. Their model was able to predict final shape easily, but was rather

inaccurate at predicting thickness distributions. They attribute this to inaccuracy in

the initial parison geometry, mold wall boundary conditions, and temperature varia-

tions. Liu (1999) similarly worked to simulate extrusion blow molding and attributed

his discrepencies to parison sagging and to non-uniform temperatures.

The literature includes some attempts to simulate blow molding. One such paper

is by McEvoy, Armstrong, and Crawford (1998). They used an elasto-viscoplastic

constitutive model for the material behavior and simulated the deformation of a 48

gram preform inside a 2 liter bottle mold using axisymmetric finite elements. They

compared bottle profiles both with and without a stretch rod and overall obtained

56



correct trends for the wall thickness profile of the final bottle. In a second paper by

Menary, et al. (1999, 2000), three constitutive models were compared: a hyperelastic

model, a creep model, and Buckley's model (1996). Of the three, Buckley's model

worked the best, in terms of giving the most accurate thickness distributions and the

most accurate free blow shape. Unfortunately, the Buckley model required the most

computation time (48 hours, as compared with 12 hours and 10 minutes for the creep

and hyperelastic models, respectively). They found the Buckley model to work well

on both 330 mL and 2 L bottle simulations, though the simulation did not quite fill

up the base of the 2 L mold. This is attributed to a different molecular weight PET

which was used for the model as compared with the material the model was fit to.

They also developed an algorithm for computing shelf life of a simulated bottle. Their

results agreed fairly well with experimental shelf life data.

Erwin, Pollock, and Gonzalez (1983) attempted to model blow-molding by using a

thin-wall shell (or membrane) theory. They used a phenomelogical fit of an invariant-

based model from Ward (Ward 1983) to predict pressure as a function of hoop stretch

and blow time. The general form of the strain energy function was:

00

W = Z CiA(11 - 3)(12 - 3) (1.2)
ij=0

where W is the strain energy, C is a coefficient, and I1 and 2 are the first and second

strain invariants, respectively. This strain energy function was fit to data from a

biaxial stretching experiment at a similar extension rate as that experienced during

blow molding (approximately 25,000 percent per minute). They found that higher

pressure is required to begin the aneurysm during blowing than to continue the blow

by a factor of two.

Schmidt, Agassant, and Bellet (1998) attempted to model the blow molding pro-

cess using an Oldroyd-B fluid model, including a viscosity which varies sharply with

tempreature and a pseudo-crystallinity correction to prevent the free blow from grow-

ing without bound radially.

Wang, Makinouchi, and coworkers (2000) used an empirical viscoplastic model for
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PET in which the model is fit in a low strain and high strain regime and each of the

model parameters is fit by a fourth-order polynomial. They compare this model with

a simple power-law fluid and a single regime viscoplastic model (no strain hardening).

Their model is able to capture the thickness distribution and final shape of a bottle

blown inside a mold quite well, while the other two cannot.

Venkateswaran et al. (1998b) used PET film data to predict bottle properties.

They used a time-temperature superposition to extrapolate to higher strain rates

and different temperatures and used an average orientation function in their model,

which considers only the end state of the polymer obtained by birefringence.

Marckmann, Verron, and Peseux (2001) used an adaptive mesh refinement tech-

nique and a "sticky" surface boundary condition for blow molding simulations. They

used a Mooney-Rivlin model and obtained fair results for the thickness distribution.

They assessed the need for a better material model and better initial thickness esti-

mates.

Each of these models has attempted to capture some feature of the stretch blow

molding process. As always, some simplifying assumptions have been used to make

the problem approachable. It is quite clear, however, that the method in which

items such as boundary conditions, temperature profiles, and pressure or stretch

rod displacement histories are applied can also significantly affect the validity of a

computer simulation.

1.4 PETG Background

Relatively little literature has been published relating to PETG. Papadopoulou and

Kalfoglou (1997) looked at the miscibility of PET and PETG and found the two

to be completely miscible at all concentrations. They found that annealing the

blends caused the PET to crystallize and led to embrittlement of the material.

Moskala (1996) examined the fatigue resistance of PETG upon adding impact mod-

ifiers. He found that the impact modifiers decreased the fatigue resistance, with

larger particles causing a larger decrease by facilitating plastic growth. Ching, Li,
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Figure 1-8: Yield and craze stress as a function of CHDM content (from Chen et
al. (1999))

and Mai (2000) looked at fracture toughness of PETG. They found that the specific

essential work of fracture was independent of gage length using double-edge-notched-

tension specimens. They also observed a ductile to brittle transition at long gage

lengths, though their paper did not suggest any mechanism to explain this observa-

tion. The specific essential work showed a small dependence on strain rate for loading

rates lower than 1 mm/min (gage lengths ranged from 50 to 250 mm), and did not

show a rate dependence at higher loading rates.

Work by Chen, Yee, et al. (1998, 1999) looked at the secondary relaxation, impact

strength, and yield behavior of a series of polyester copolymer glasses, including

PETG. They found that yield stress decreased as percent poly(1,4-cyclohexylene-

dimethylene terephthalate) (PCT) increased (PETG is 69% PET, 31% PCT). The

craze stress, on the other hand, increased as percent PCT increased. The tradeoff of

yield stress decreasing and craze stress increasing led to a brittle-ductile transition.

Figure 1-8 shows a summary of these results at room temperature and a strain rate

of 22 sec 1 .

Unpublished work of Patton (1998) first looked at the effect of rate and temper-

ature on the mechanical behavior of PETG. In this work, uniaxial and plane strain

compression tests were performed over a range of temperatures (25 C to 100 C)

59



and over a range of strain rates. A strong dependence on both temperature and rate

was observed for the material. The stress-strain curves followed similar trends to

those reported for PET under similar testing conditions (1999), including a dramatic

strain hardening at large levels of strain. An extension to this work was reported by

Brown (Dupaix) (2000), which included a more extensive series of experiments and

the initial development of a constitutive model to account for the behavior.

Recent work by Kattan, Dargent, et al. (2001, 2002) looked at strain-induced

crystallization in PETG and aimed to compare the behavior of PET and PETG.

They conducted experiments on both materials at a strain rate of 0.14 sesc' and a

temperature of 95 C. They found that very small levels of crystallinity (less than 3

percent) were attainable in PETG under normal drawing conditions. Upon annealing,

it was possible to increase this level of crystallinity, but it was still substantially lower

than that of PET. In their follow-up study comparing PET with PETG (Kattan et al.

2002), they observed that upon deformation both materials develop a significant

amount of what they referred to as a rigid amorphous phase (35 % and 25 % in

PET and PETG, respectively). This rigid amorphous phase was identified using

thermally stimulated depolarisation current eperiments. After the formation of the

rigid amorphous mesophase PET proceeded to crystallize whereas the PETG did not

(measured crystallinities were 40 % for PET and 3% for PETG).

1.5 Summary

As has been discussed, the deformation behavior and morphological structure of PET

has been widely studied. Constitutive models have advanced to be able to capture

many of the features of the finite strain behavior of PET, but in many instances the

incorporation of strain-induced crystallization into the models is highly empirical,

and possibly inappropriate due to evidence that at many strain rates the material is

not actually able to crystallize while the deformation is proceeding. A few example

studies have attempted to characterize the blow molding process, but in all of these

cases, the authors cite the need for better models to improve the predictive ability
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of the simulations. Additionally, very little has been published on the mechanical

behavior of PETG, and no constitutive models have been found in the literature

which attempt to model the deformation behavior of PETG. This thesis is intended

to begin to address these open issues.
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Chapter 2

PETG Experiments

2.1 Introduction

In the polymer processing industry, poly(ethylene terephthalate) is a front-runner in

terms of market volume and diversity of its applications. Those applications range

from drawn fibers and films for clothing and photography to food storage applications,

most notably that of carbonated beverage containers. The primary reason for its

success in these applications is its ability to undergo strain-induced crystallization

under appropriate conditions of temperature and strain rate.

Another polymer of less fame is an amorphous copolymer of PET, often called

PETG. The letter G refers to the additional glycol group along the backbone of the

copolymerizing agent, poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) (see

Figures 2-1 and 2-2). Specifically, PETG is a random copolymer consisting of 31

mol % PCT and 69 mol % PET. PETG is often used to produce large thermoformed

parts such as vending machine faces and point-of-purchase display panels. PET and

PETG both exhibit quite similar deformation behavior, have a similar glass transi-

tion temperature, are visually nearly indistinguishable, but there is one substantial

difference: PET readily undergoes strain-induced crystallization, whereas in PETG

crystallization is very difficult, if not impossible at processing temperatures. Two

recent papers by Kattan, et al. (2001, 2002) address the difference in crystallizability

between the two polymers.
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In this chapter a thorough set of mechanical test data is presented for amorphous

PETG over a wide range of temperatures and strain rates. In Chapter 3, analagous

data for PET will be presented for comparative purposes. To date, there has been

very little data presented in the literature with regard to the mechanical behavior

of PETG (Brown 2000; Chen et al. 1999; Kattan et al. 2001; Kattan et al. 2002;

Patton 1998). As a result, this comprehensive set of compression stress-strain curves

can serve as a starting point for developing constitutive models for this material

which has commercial applicability of its own. In Chapters 4 and 6 some constitutive

modeling approaches to capture the trends observed in PETG will be presented and

results will be compared with this experimental data.

2.2 Material

The material used in all experiments was PETG 6763 supplied by Eastman Chemical

Co. with a weight average molecular weight of 38,888 and a polydispersity of 2. It

was supplied in the form of 4 in. by 4 in. injection molded plaques of 1/8 in. nominal

thickness, from which compression specimens were machined.
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2.3 DSC

Differential scanning calorimetry (DSC) was performed using a Perkin Elmer DSC

7 at a constant heating rate of 10 C per minute. The equipment was calibrated

with zinc and indium. DSC scans performed on the as-received material as well as

on deformed material indicated that there was no crystallinity in the material, either

before or after testing. DSC scans also identified the glass transition temperature for

the material as 80 C.

2.4 DMA

Dynamic mechanical analysis (DMA) was performed on the as-received material.

Specimens were cut using a Buehler Isomet cutoff saw at a very low cutting speed so as

to prevent aging of the material. Specimens were approximately 30 mm long, 3.2 mm

wide, and 1 mm thick. In DMA experiments, an oscillating force (tensile, bending,

or torsional) is applied to the material at various frequencies. The temperature is

gradually increased and the response of the material is measured. From the measured

response, the shear (storage) modulus can be obtained as a function of temperature

and frequency. Each sample was tested in a tensile mode at frequencies ranging from 1

Hz to 100 Hz and at temperatures ranging from 40 C to 110 C. The oscillating force

had a mean value of 30 gf (.2943 N) with an amplitude of oscillation of 45 gf (.4415

N). The modulus data is shown in figures 2-3 and 2-4. The shift in the curve with

frequency demonstrates a strain rate dependence of the glass transition temperature.

When the material is deformed at higher frequencies, which corresponds to higher

strain rates, the glass transition temperature shifts to higher temperatures.

With a knowledge of the DMA testing frequency, the elastic modulus, the specimen

dimensions, and the magnitude of the cyclic load, an equivalent strain rate can be

computed at various points on the DMA curves. These data points can then be

compared with results from other tests, such as constant strain rate compression

experiments. This is discussed in further detail in section 4.2.1.
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Figure 2-4: PETG DMA data, enlarged to show detail at high temperature
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Figure 2-5: Compression experiment setup (a) Uniaxial compression (b) Plane strain
compression

2.5 Compression Experiments

Two types of compression tests were performed: uniaxial and plane strain. Schematics

of the two loading configurations are shown in figure 2-5. For the uniaxial tests,

specimens were cut into circular disks 12.39 mm in diameter. For the plane strain

experiments, square cross-section samples were cut to measure 9.55 mm on a side. The

thickness of each specimen was that of the plaque thickness, nominally 1/8 in. (3.2

mm). For each test, WD-40, a common lubricant, was applied to the compression

platens and a sheet of teflon was placed between the compression platens and the

PETG sample to eliminate the effects of friction. Care was taken so that no lubricant

contacted the test specimens. The specimens were brought to test temperature by use

of an electric resistance heater. They were allowed to come to thermal equilibrium

for a total of 20 minutes.

The compression experiments were performed using an Instron 1350 with servo-
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hydraulic controls. The cross head speed was controlled using a personal computer

running Windows NT and LabView. The vertical specimen displacement was mea-

sured using an extensometer and was fed back through the computer to control actu-

ator displacement in order to eliminate load train compliance error. Specimens were

compressed at a constant logarithmic strain rate to final strains ranging from -0.8

to -2.0 in the uniaxial experiments and to final strains from -0.8 to -1.3 in the plane

strain experiments. After loading, the specimens were immediately unloaded using

the same logarithmic strain rate.

The load was measured using a 10,000 lb. load cell and was acquired by standard

data acquisition software during the experiments. True stress was determined from

the initial cross-sectional area and by assuming no volume change for the polymer

during plastic deformation. Thus,

InitialArea * InitialHeight
CurrentArea = (2.1)

Curr ent Hei ght

MeasuredLoad (2.2)

CurrentArea

Each test was performed at least twice in order to ensure repeatability. Tests

were performed at strain rates ranging from -.005 sec- to -1.0 sec-1 . Attempting

to perform experiments at higher strain rates resulted in oscillatory data apparently

due to exciting a system natural frequency and were beyond the capability of this

equipment. Temperatures were varied from 25 C to 110 C. In uniaxial compression

experiments, temperature was measured using four thermocouples cemented to the

compression platens. In plane strain compression experiments, temperature was mea-

sured using a single thermocouple in contact with the specimen. A simple computer

program monitored the temperature readings from the thermocouples and adjusted

the voltage supplied to the furnace to keep the specimen temperature constant at a

preselected value.

Photographs showing undeformed PETG specimens as well as specimens deformed

at room temperature to a final strain of 1.2 are shown in figures 2-6 and 2-7.
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Figure 2-8: Tensile bar

2.6 Tensile Experiments

A few tensile tests were performed to compare with the experimental compression

results. For these tests, small tensile bars were machined from larger bars. This was

done so that the bars could be stretched to large extensions inside of an environmental

chamber. The tensile bars had a gauge length of 0.3125 in. and a rectangular cross-

section 0.25 in. wide by 0.125 in. thick (see figure 2-8). Tests were conducted at

90 C and 100 C and at a constant extension rate of 0.3125 in/sec, corresponding

to a nominal initial strain rate of 1.Osec 1 . Tests were conducted on an Instron 5582

electro-mechanical system with an Instron model 3119-007 environmental chamber.

Samples were allowed to come to thermal equilibrium for a total of 30 minutes.

During the experiments, the load required to deform the specimen and the crosshead

displacement was measured and recorded. From these, it can be challenging to obtain

true stress-true strain curves as the deformation may not be homogeneous. However,

an average true stress can be calculated by assuming constant volume and by assum-

ing that the material contracts in equal proportions in width and thickness. True

logarighmic strain can be calculated from the measured crosshead displacement and

the initial gage length.

2.7 Biaxial Stretching Experiments

Biaxial stretching experiments were conducted on a T.M. Long machine at Eastman

Chemical. The samples were cut into 2 in. squares from .002 in. thick film material,
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supplied by Eastman. Samples were tested at temperatures of 95 C, 100 C, and

105 C. The samples were held in place by grips on all four sides which employed

a scissor-like mechanism to allow for large deformations in both directions. Speci-

mens were heated by forced convection. They were held in position and heated for

approximately 60 sec before being stretched. Specimen temperature was not directly

measured, however, the temperature of the convective flow was kept at a constant

value and the specimens were all heated for the same length of time. Specimens were

deformed at a constant extension rate of 14 in/sec, corresponding to a nominal initial

strain rate of 7sec- 1. Tests were conducted in three different deformation modes:

equibiaxial extension, constrained-width tension, and sequential biaxial extension.

2.8 Results and Discussion

2.8.1 Compression Experiments

The results are shown in the following figures and are discussed below. Figures 2-

9 through 2-21 show uniaxial compression data at each temperature. Figures 2-23

through 2-28 show the same data plotted at constant strain rate. Figures 2-29 through

2-33 show the effect of unloading at different final strains in uniaxial compression.

From these figures it can be observed that PETG exhibits the following general

trends. First, the material has an initially stiff response which is highly temperature

dependent. The modulus decreases moderately with increasing temperature but is

fairly independent of strain-rate at temperatures below the glass transition temper-

ature (T9 ). In the transition region, the modulus drops dramatically with increasing

temperature. This dropoff occurs at higher temperatures for specimens deformed at

higher strain rates. At temperatures above the transition region, the modulus contin-

ues to drop as temperature rises, but the change is more moderate. The dependence

is also mildly strain-rate dependent in this region (above T9 ), with increasing strain

rate leading to increased modulus.

Second, at temperatures below the glass transition temperature the polymer ex-
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hibits a definite yield stress which increases with increasing strain rate and with

decreasing temperature. This yield is followed by a considerable amount of strain

softening. The amount of strain softening is relatively strain-rate independent, but

decreases with increasing temperature. Effects of adiabatic heating due to plastic

deformation can also become significant at temperatures below the glass transition.

This effect is seen in figure 2-9 for room temperature data where at a strain on the

order of 0.9, the high strain rate curves cross over the curves for lower rates.

At temperatures above the transition temperature, the stress-strain curves show

a monotonic rise in stress with increasing strain, which is characteristic of rubber

elastomers. The yield stress is no longer abrupt and instead the curve gently rolls

over and the material begins to flow at a stress level on the order of 1-2 MPa. The

magnitude of this flow stress also depends on strain rate and temperature. At higher

temperatures and lower strain rates the roll over occurs at lower stress levels. Fig-

ures 2-16, 2-18, 2-20, and 2-22 show an enlarged view of the initial modulus and roll

over to flow for the polymer at and above the glass transition temperature.

Figures 2-15 and 2-16 show the data at 80 C, approximately the glass transition

temperature for PETG. This is a very illustrative set of curves, clearly demonstrating

the strain rate dependence of the glass transition temperature. This strain rate de-

pendence causes the glass transition temperature to effectively increase as the strain

rate increased. In figure 2-15, it can be seen that at high strain rates, 80 C is still

below the material's transition temperature, and the material exhibits the high yield

stress and strain softening characteristic of polymers in the glassy state. At low strain

rates, however, there is no apparent yield stress and the stress-strain curve rises mono-

tonically. This indicates that at these lower strain rates the polymer is already above

its glass transition at 80 C and hence exhibits rubbery polymeric behavior.

Third, after the strain softening region (or after the roll over to flow for tests

above the transition temperature), the polymer begins to strain harden as the strain

level is increased. Strain hardening is evident through both an initial hardening

modulus in the flow region (at moderate strains) followed by a dramatic upturn in

the stress-strain at very large strains. Strain hardening is more pronounced at lower
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temperatures and higher strain rates. Additionally, with increasing temperature (and

decreasing strain rate) the strain level at which the dramatic strain hardening occurs

is postponed to higher strains.

In the constant strain rate figures (figures 2-23 to 2-28) the temperature depen-

dence of the material is clearly discernible. At each of the strain rates, the initial

yield or initial flow stress decreases as temperature increases. The hardening slope

decreases with increasing temperature and the strain level at which the dramatic

upswing in stress occurs is greater at higher temperatures.

Figures 2-29 to 2-33 show the material response as it is unloaded at different final

strains. The data shows good repeatability and shows that at temperatures above

the glass transition (see figures 2-32 and 2-33), much of the deformation is recovered

upon unloading regardless of the final strain. Experimentally, it is difficult to de-

termine how much of the deformation is actually recovered because upon unloading

the bottom surface of the specimen remains in contact with the compression platen

while the top surface is air quenched. This causes the rubbery specimens to curl up

due to the thermal gradient during unloading so that the final specimen dimensions

are difficult to measure. The effect is less pronounced in plane strain due to the

test fixture remaining in contact with the specimen. Post test measurements using

calipers indicate that the plane strain compression specimens recover to within 93%

of their original height at temperatures above the glass transition. In contrast, at

temperatures below the glass transition very little (on the order of 10 to 15 %) of the

strain is recovered at all final strain levels.

Figure 2-17 demonstrates the strain rate dependence of strain recovery. Less re-

covery is observed upon unloading at lower strain rates than at higher strain rates.

This is because at low rates more of the deformation is accommodated by molecular

relaxation than at high rates, where deformation is due primarily to network ori-

entation. Since the deformation due to molecular relaxation is permanent and the

deformation due to orientation is recoverable, specimens which are deformed at higher

rates are able to recover more. Again, due to the quenching phenomenon, it is diffi-

cult to pinpoint exact numbers, but at 90 C, the material recovers by approximately

73



75% at -1.0 sec 1 and only recovers by 45% at -.005 sec- 1 .

Since the specimens were unloaded immediately upon reaching the appropriate

final strain, the initial unloading slope may be somewhat unreliable as a true measure

of the material behavior of unloading at the given strain rate. There may be some

additional creep in the measurement due to the turn around response of the actuator

which could be removed by doing a brief hold before unloading the material.

Each of these trends is consistent with the trends exhibited by PET in compres-

sion, with the exception of strain recovery (Llana and Boyce 1999; Zaroulis and Boyce

1997). PET exhibits substantially less recovery at temperatures above the glass tran-

sition due to strain-induced crystallization. For example, at 90 C, -1.0 sec 1 PETG

recovers by approximately 75%, whereas PET under the same conditions undergoes

less than 50% recovery. A full set of compression data for PET and a thorough

comparison between the two materials will be addressed in Chapter 3.

Figures 2-34 through 2-40 show plane strain compression data at each tempera-

ture. Figures 2-42 through 2-47 show the same data plotted at constant strain rate.

The plane strain compression data exhibits the same trends as were observed in

the uniaxial compression data. In figures 2-48 through 2-51 the comparison of plane

strain with uniaxial deformation modes is depicted. It was observed by comparing

raw data from room temperature plane strain and uniaxial compression experiments

that there was additional compliance and settling in the plane strain fixturing, which

can be seen in figure 2-52. The initial modulus in plane strain should be slightly

higher than in uniaxial compression. All plane strain data has been corrected for

this fixturing compliance by assuming the compliance of the fixturing is linear with a

modulus of 1.5 GPa (estimated from room temperature experiments). The corrected

strain for each data point is then calculated by subtracting the compliance strain

from the measured strain:

Ecorrected Emeasured E-fmeaured(2.3)

It is also interesting to note that the higher rate data exhibits the effects of ther-
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Figure 2-9: PETG Uniaxial compression data, Temperature = 25 C

mal softening due to adiabatic heating during deformation. This effect is present in

both uniaxial compression and plane strain compression at low temperatures, but is

more pronounced in plane strain due to the larger stress levels in the material. This

effect manifests itself in the crossover of the stress-strain curves at large strains. For

example, in figure 2-34, this can be observed as the -0.5 sec- 1 data crosses over the

-0.05 sec- 1 data at a strain level of about -0.9. In the absence of thermal softening,

the higher rate data would be expected to sustain a higher stress level throughout

the deformation.

Figures 2-48 through 2-51 also demonstrate that in plane strain compression, the

material begins to strain harden at a lower logarithmic strain level than in uniaxial

compression.
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2.8.2 Tension Experiments

Results from uniaxial tension tests on PETG are shown in Figures 2-53 to 2-57. In

these experiments, deformation was nearly homogeneous-no neck developed and the

whole specimen thinned until fracture or until the maximum extension allowed by the

environmental chamber. Figure 2-53 shows the measured load displacement curves

for tension tests at temperatures ranging from 90 C to 110 C. The general trends

are as would be expected for the material behavior, i.e. the material becomes softer

with increasing temperature. This softening is observed in terms of a more compliant

initial modulus, a lower yield stress, and lower strain hardening. A drop in the curve

is seen in these curves and is due either to inhomogeneity in the deformation or to

the specimen slipping from the grips.

Figure 2-54 shows the calculated nominal stress-stretch curves for the same data.

Nominal stress is computed simply as the load divided by the initial area in the

gauge length. Stretch is computed as the current length (gage length plus crosshead
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displacement) divided by the initial (gage) length. The data can be further reduced

to yield a true stress-stretch curve by assuming uniform deformation and no volume

change. In this manner the current area can be calculated using the axial stretch.

This is the approach used to compute the stress shown in figures 2-55 to 2-57.

2.8.3 Biaxial Extension Experiments

In most of these experiments, the test was conducted until the sample fractured. The

testing apparatus was capable of applying a stretch of 7 in each direction. Figure 2-

58 shows the results of equibiaxial extension experiments conducted at 100 C and

105 C. These curves again show that the material is more compliant with increas-

ing temperature. True stress values were calculated assuming constant volume and

uniform deformation.

Figures 2-59 and 2-61 show the results of constrained width tension experiments

conducted at 90 C, 100 C, and 105 C. These curves demonstrate the increase in

material compliance with increasing temperature. True stress values were calculated

assuming constant volume and uniform deformation.

An example of a sequential biaxial stretching experiment is shown in figures 2-62

and 2-64. The samples were stretched to a nominal stretch of 2 in the first stretch

direction. In figure 2-62, engineering stress and strain are plotted as a function

of time. In the stress-time plot, solid lines are stress values in the first stretching

direction (X-direction) and dashed lines are the stress in the second (Y-) direction.

In figure 2-63 true stress and true strain curves are plotted. The calculations are done

assuming constant volume and uniform deformation. In figure 2-64 true stress and

stretch ratio are plotted as a function of time. It can be observed in these figures

that during stretching in the first direction, the stress rises in both the X- and Y-

directions, though the stress is higher in the stretching direction. During the stretch

in the second direction, the stress in that direction surpasses the stress in the first

stretch direction and continues to rise until the end of the test.

The effect of temperature is to cause lower stress levels throughout the experiment.

It should be noted that in the two test samples illustrated here, the sample drawn at
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100 C broke rather early in the experiment, so it is unclear the effect of temperature

at large extensions.

Similar curves are shown in figures 2-65 to 2-67 for a sequential stretching exper-

iment in which the sample was stretched to a nominal stretch of 3 in the first stretch

direction before being stretched in the second direction.

2.9 Summary of PETG Observations

In this chapter we have observed the rate, temperature, and strain state dependence

of the mechanical behavior of PETG. In compression, the material exhibits four char-

acteristic regions above the glass transition temperature: (1) a relatively stiff initial

modulus, (2) a rollover to flow at around 2 MPa, (3) a gradual stiffening through

the moderate strain regime, and (4) a dramatic upturn in strain at very large strain

levels. Each of these features depends strongly on the temperature and rate of defor-

mation. The initial modulus, flow stress, and initial hardening modulus all increase

with decreasing temperature or increasing strain rate. The dramatic upturn in strain

occurs at earlier strain levels with increasing strain rate or decreasing temperature.

The material also exhibits a stiffer response and an earlier upturn in the stress-strain

curve in plane strain compression than in uniaxial compression.

The tensile experiments illustrate similar temperature effects on the material be-

havior. It is difficult to directly compare tensile experiments with compression ex-

periments, as the compression experiments were conducted at a constant strain rate

and the tensile experiments were conducted at a constant extension rate. Hence,

the tensile samples were subjected to a strain rate which decreased throughout the

duration of the experiment.
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Chapter 3

PET Experiments

3.1 Introduction

Poly(ethylene terephthalate) is a widely used polymer for a variety of commercial

applications. These applications range from drawn fibers and films for clothing and

photography to carbonated beverage containers. A primary reason for its success

in these applications is its ability to undergo strain-induced crystallization under

appropriate conditions of temperature and strain rate. Because of its wide use, PET

has been the subject of many research groups as referenced in Chapter 1.

In this chapter, experimental data for PET is presented for comparison to the

behavior of PETG (ref. Chapter 2).

3.2 Material

The material used in all experiments was PET 9921 supplied by Eastman Chemical

Co. with a weight average molecular weight of 51,365 and a polydispersity of 2. It

was supplied in the form of 4 in. by 4 in. plaques of 1/8 in. nominal thickness, from

which compression specimens were machined.
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3.3 DSC

Differential scanning calorimetry (DSC) was performed using a Perkin Elmer DSC 7

at a constant heating rate of 10 C per minute. The equipment was calibrated with

zinc and indium. DSC scans performed on the as-received material indicated that

there was no crystallinity in the material.

3.4 Experimental Setup

The reader is referred to sections 2.5 to 2.7 for a complete description of the experi-

mental setup. All experiments on PET followed a setup identical to that for PETG.

3.5 Results and Discussion

3.5.1 Compression Experiments

The results are shown in the following figures and are discussed below. Figures 3-

1 through 3-14 show uniaxial compression data at each temperature. Figures 3-15

through 3-20 show the same data plotted at constant strain rate.

From these figures it can be observed that PET exhibits the same general trends

as PETG. A thorough description of these features is provided in sec. 2.8.1, but a brief

summary will be included here. First, the material has an initially stiff response which

is highly temperature dependent, decreasing moderately with increasing temperature

below and above the glass transition temperature and dropping dramatically with

temperature in the transition region. There is also a strong strain rate dependence

in the transition region, with increasing strain rate leading to a higher effective 09 .

Second, at temperatures below the glass transition temperature the polymer ex-

hibits a definite yield stress followed by strain softening. At temperatures above the

transition temperature, the stress-strain curves show the monotonic rise in stress with

increasing strain, which is characteristic of rubber elastomers. The magnitude of the

yield and flow stresses depend on strain rate and temperature. At higher temperatures
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and lower strain rates, yield (flow) occurs at lower stress levels. Figures 3-8, 3-10, 3-

12, and 3-14 show an enlarged view of the initial modulus and roll over to flow for

the polymer above the glass transition temperature.

Third, the polymer begins to strain harden as the strain level is increased. The

material exhibits both an initial hardening modulus and a dramatic upturn in stress

at very large strains.

In the constant strain rate figures (figures 3-15 to 3-20) the temperature depen-

dence of the material is clearly discernible. At each of the strain rates, the initial

yield or initial flow stress decreases as temperature increases. The hardening slope

decreases with increasing temperature and the strain at which the dramatic upswing

in stress occurs is greater at higher temperatures.

Figures 3-21 through 3-28 show plane strain compression data at each tempera-

ture. Figures 3-29 through 3-34 show the same data plotted at constant strain rate.

The plane strain compression data indicates the same trends as were observed in

the uniaxial compression data. In figures 3-35 through 3-38 the comparison of plane

strain with uniaxial deformation modes is depicted.

Figures 3-35 through 3-38 also demonstrate that the deformation behavior of PET

includes a very dramatic upswing in plane strain compression. This upswing is more

pronounced than in uniaxial compression and much more dramatic than the behavior

shown by PETG. This is likely due to strain-induced crystallization. While strain-

induced crystallization is able to occur in PET regardless of the strain state, in plane

strain the crystallites are completely aligned in one direction. In uniaxial compression,

on the other hand, the crystallites are oriented within a plane perpendicular to the

loading direction, but within the plane, the orientation of each crystallite is completely

random (see figures 1-6 and 1-7 (Llana 1998; Llana and Boyce 1999)). This could

explain why the plane strain data hardens so dramatically. In PETG, where strain-

induced crystallization does not occur, this dramatic hardening is not seen in plane

strain compression.
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Figure 3-8: PET Uniaxial compression data, Temperature = 80 C, enlarged to show
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Figure 3-10: PET Uniaxial compression data, Temperature = 90 C, enlarged to show
initial modulus and flow stress
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Figure 3-11: PET Uniaxial compression data, Temperature = 100 C
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Figure 3-12: PET Uniaxial compression data, Temperature = 100 C, enlarged to
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Figure 3-37: PET Uniaxial and plane strain compression data, Temperature = 90 C

3.5.2 Tension Experiments

Results from uniaxial tension tests on PET are shown in Figures 3-39 to 3-43. Fig-

ure 3-39 shows the measured load displacement curves for tension tests at tempera-

tures of 90 C and 95 C. The general trends are as would be expected for the material

behavior, i.e. the material becomes softer with increasing temperature. This soften-

ing is observed in terms of a more compliant initial modulus, a lower yield stress, and

lower strain hardening. Deformation in these tensile experiments was overall homo-

geneous; no neck developed during deformation, rather, the entire specimen thinned

until it broke or until the maximum extension allowed by the test equipment was

reached.

Figure 3-40 shows the calculated nominal stress-stretch curves for the same data.

Nominal stress is computed as simply the load divided by the initial area in the gauge

length. Stretch is computed as the change in length (crosshead displacement) divided

by the initial length (gauge length). The data can be further reduced to an averaged

true stress-stretch curve by assuming uniform deformation and no volume change and
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Figure 3-38: PET Uniaxial and plane strain compression data, Temperature = 100 C

thus the current area can be calculated knowing the axial stretch. Using this area to

compute the stress gives the data in figures 3-41 to 3-43.

3.5.3 Biaxial Extension Experiments

Figure 3-44 shows the results of equibiaxial extension experiments conducted at 95 C,

100 C, and 105 C. These curves show that the material is more compliant with

increasing temperature. True stress values were calculated assuming constant volume

and uniform deformation.

Figures 3-45 to 3-47 show the results of constrained width tension experiments

conducted at 95 C, 100 C, and 105 C. These curves again show that the material

is more compliant with increasing temperature. True stress values were calculated

assuming constant volume and uniform deformation.

An example of a sequential biaxial stretching experiment is shown in figures 3-48

and 3-50. In these experiments samples were stretched to a nominal stretch of 2 in

the first stretch direction. In figure 3-48, engineering stress and strain are plotted
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as a function of time. In the stress-time plot, solid lines are stress values in the

first stretching direction (X-direction) and dashed lines are the stress in the second

(Y-) direction. In figure 3-49 true stress and true strain curves are plotted. The

calculations are done assuming constant volume and uniform deformation. In figure 3-

50 true stress and stretch ratio are plotted as a function of time.

The effect of temperature is to cause lower stress levels throughout the experiment.

It should be noted that in the two test samples illustrated here, the sample drawn at

100 C broke rather early in the experiment, so it is unclear the effect of temperature

at large extensions.

Similar curves are shown in figures 3-51 to 3-53 but in these tests, the material

was stretched to a nominal stretch of 3 in the first direction.

In each of these curves, it can be seen by comparison to corresponding figures

in Chapter 2, that the PET data rises to a highter stress level at large strains than

the PETG. This is generally attributed to strain-induced crystallization in PET. It

should be noted, however, that the PETG curves do exhibit strain hardening, but the

PETG films tended to fracture quite early in the experiments. It therefore cannot

be concluded from these biaxial extension curves alone that the difference is due to

crystallization. It could simply be due to a lower fracture resistance in PETG.

3.6 Summary of PET Observations

In this chapter we have observed the rate, temperature, and strain state dependence

of the mechanical behavior of PET. In compression, the material exhibits four char-

acteristic regions above the glass transition temperature: (1) a relatively stiff initial

modulus, (2) a rollover to flow at around 2 MPa, (3) a gradual stiffening through the

moderate strain regime, and (4) a dramatic upturn in strain at very large strain levels.

Each of these features depends strongly on the temperature and rate of deformation.

The initial modulus, flow stress, and initial hardening modulus all increase with de-

creasing temperature or increasing strain rate. The dramatic upturn in strain occurs

at earlier strain levels with increasing strain rate or decreasing temperature. The ma-
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terial also exhibits a stiffer response and an earlier upturn in the stress-strain curve

in plane strain compression than in uniaxial compression. The tensile experiments

illustrate similar temperature effects on the material behavior.

3.7 Comparison of PET and PETG Behavior

Careful comparison of the data in Chapter 2 for PETG with the previous sections

for PET show that the overall mechanical behavior of PET and PETG are quite

simiilar. Both materials exhibit all four stress-strain features above Tg and have

similar dependencies on temperature, strain rate, and strain state. A few figures

representing this data will be repeated here for comparison purposes. In figures 3-54

and 3-55 a similar dependence on strain rate is observed for the two materials. With

an increase in strain rate, both materials exhibit a stiffer initial modulus, higher flow

stress, increased strain hardening, and an earlier dramatic upturn in the stress-strain

curve. Figures 3-56 and 3-57 show the temperature dependence of the behavior in

the two materials. With increasing temperature, both materials exhibit a decrease

in initial modulus and flow stress, less strain hardening, and the dramatic strain

hardening is postponed to higher strain levels. Figures 3-58 through 3-61 show the

state of strain dependence of PETG and PET. In both materials, the response of the

material is stiffer in plane strain compression than in uniaxial compression. In PET

it appears that there is a more dramatic increase in the strain hardening in plane

strain compression. This is especially visible in the 90 C data (figure 3-59. This

is likely due to strain-induced crystallization or to the development of some highly

ordered mesophase which is able to occur in PET, but not in PETG. Otherwise, the

stress-strain behavior of the two materials is nearly identical.

An additional difference in the two materials is seen in extensional deformation

modes, as shown in figures 3-62 and 3-63. PETG is unable to sustain deformations

as large as PET without fracturing first. It is unclear whether this is due to strain-

induced crystallization occuring in PET or if it is due to a lower fracture resistance

in PETG.
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Chapter 4

Constitutive Model for PETG

In this chapter, we develop a constitutive model for the stress-strain behavior of

PETG, focusing primarily on capturing the behavior at temperatures above the glass

transition temperature. It should be noted that 0
g itself is rate dependent, as was

illustrated by dynamic mechanical analysis experiments in Chapter 2. Broadly, there

are two schools of modeling in this nearly melt-like regime of polymer deformation

and flow: Non-Newtonian Fluid Mechanics, which tries to nonlinearize the viscosity

and add elasticity, and Solid Mechanics, which tries to add viscous effects into an

elastic or hyperelastic model. In this work, we will use the Solid Mechanics approach,

but will discuss and compare results with the non-Newtonian fluids approach at the

end of the chapter.

4.1 Background and Development

The overall framework for the constitutive model follows prior solid mechanics devel-

opments in modeling time dependent large strain deformation of polymers (Bergstrom

and Boyce 1998; Boyce et al. 2000). In particular, the modeling approach and devel-

opment of this thesis build on the work of Boyce, Socrate, and Llana (2000).

The constitutive response of the polymer can be interpreted as follows. In the

presence of an applied load, the polymer resists deformation by two mechanisms:

a resistance due to intermolecular forces and a network resistance due to molecular
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orientation. This is shown schematically in figure 4-1 with the two distinct resistances

represented as A and B.

Resistance A arises due to the intermolecular resistance between neighboring poly-

mer segments. This gives the material its initial stiffness and results in a finite stress

at which the polymer will flow, termed the flow stress. In resistance B, molecular net-

work stretching and orientation of the polymer chains causes the polymer to stiffen at

large strains. The nonlinear dashpot captures molecular relaxation at higher temper-

atures. Intermolecular contributions to the material behavior are due to changes in

internal energy whereas the molecular network contributions are entropic in nature.

The two resistances occur concurrently and are therefore modeled as being in paral-

lel. Thus, the deformation gradient in each network is equal to the total deformation

gradient,

FA = FB = F (4.1)

where the deformation gradient is defined as:

F = X(4.2)
Fx

where X represents the reference position and x the current position of a material

point. The descriptions of the intermolecular (A) and intramolecular (B) resistances

will be developed separately.

4.1.1 Resistance A: Intermolecular Interactions

The deformation gradient of resistance A is decomposed into elastic and plastic com-

ponents in a multiplicative manner, as described by Lee (1969) and as illustrated

schematically in figure 4-2.

FA = Fe FP (4.3)
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Figure 4-1: Schematic representation of the constitutive model
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Figure 4-2: Kinematical description of elastic-plastic decomposition

and is then decomposed into stretch and rotation components using the polar decom-

position

(4.4)

(4.5)

The rate kinematics are described by the velocity gradient, LA

LA FAFA' (4.6)

By substitution of the elastic and plastic contributions to the deformation gradient

this becomes

LA FF71 ± = LA +f (4.7)

Note that the plastic velocity gradient consists of a symmetric plastic rate of stretching

and an antisymmetric plastic spin: Lf = b + W. The representation is made
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unique by prescribing the plastic spin in the loaded configuration to be zero: 0.

The rate of stretching is constitutively described by

Dp = ilNA (4.8)

Note that NA is the normalized deviatoric stress in resistance A

NA 1 TA (4.9)

[111/2
TA 2A A I

TA is the Cauchy stress and is related to the elastic deformation gradient by the

constitutive relation

TA= 1 A e[InVe (4.11)

where JA = det F% is the volume change, 2" is the fourth order tensor of elastic

constants, and ln V' is the Hencky strain (Anand 1979). The plastic strain rate, ,

is assumed to follow a thermally activated process

. '[zxG(i --W3ts)].
A' = 'OAexp [ kO J (4.12)

where §OA is the pre-exponential factor, AG is the activation energy which must be

overcome for flow to begin, s is the shear resistance, taken to be .15p (p is the shear

modulus), k is Boltzmann's constant, and 0 is the absolute temperature. The shear

resistance can be further modified to account for pressure as in Boyce et al. (Boyce,

Parks, and Argon 1988):

s = s(1 + ap/s) (4.13)

where the pressure p = -tr(TA) and a is the pressure coefficient.

Equations 4.1 to 4.13 complete the constitutive prescription for resistance A.
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4.1.2 Resistance B: Network Interactions

Two mechanisms are involved in the deformation of resistance B: first, the stretching

and orientation of the polymer chain network and second, molecular relaxation. Re-

sistance B can be thought of as a non-linear spring in series with a viscous element

(see figure 4-1). As such, the deformation of this element can also be multiplicatively

decomposed into a network and flow portion:

FB = F NFF (4.14)

The velocity gradient is then

LB FBFB (4.15)

LB F= F~ 1  + F NF F'F -=1 = LN + LF (4.16)

Again, BL =b + is made unique by setting the spin to zero, WF = 0.

The Arruda-Boyce eight-chain rubber elasticity model (Arruda and Boyce 1993a;

Arruda and Boyce 1993b) is used to prescribe the stress arising from the network

stretching and orientation of the polymer. Figure 4-3 illustrates how a collection of

random polymer chains will each undergo elongation and a change in orientation with

deformation. The 8-chain model attempts to capture the overall effect of stretching

and orientation by using a unit cell model, which consists of 8 identical chains (as

shown schematically in figure 4-4. The stretch of each chain in the network is given by

an effective chain stretch, or the root-mean square of the distortional applied stretch:

AN t( N]1/2, where N N (TB1/3F B, and JB= detFN . The

relationship between the chain stretch and the network stress is then

TB- 1 uk0 N [1 AN N N)2 ]

JB 3 AN LvNj

The parameters in this expression are as follows: v is the chain density (where a chain

is defined as that portion of a polymer molecule between two entanglements), N is the

number of rigid links between entanglements, and vkO is a rubbery modulus, which
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Figure 4-3: Schematic illustrating the stretching and orientation of chains in a random
network

is proportional to the initial hardening modulus of the strain hardening curve, or

the initial slope of the stress-strain curve at the onset of flow, before much stiffening

or hardening has occurred. 12-1 is the inverse Langevin function given by 2 (43)

= coth(#) -(1/4). This is derived from a non-Gaussian probability function which

accounts for the fact that the chains have a finite extensibility. '---[AN/V§V]provides

the functionality that as AN approaches IN, the stress rises dramatically.1

The rate of molecular relaxation is given by

DF=-FNn (4.18)

where NB is
N

NB IB (4-19)

1 For example, in axial tension, if stress rises very dramatically at A* = X, the chain stretch at

that point is } (X 2 + 2), from which one obtains the value of VN.
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Figure 4-4: Schematic illustrating the 8-chain network model

1i 1/2
7B = [§r/rTj (4.20)

TB B B I ')

and TB is prescribed using the Arruda-Boyce model (eqn. 4.17). The only remain-

ing unknown is the rate of relaxation, F, which must be constitutively prescribed.

The assumed mechanism is chain reptation, the physical picture being one of poly-

mer chains sliding through tube-like paths created by the entangled chains around

them (see fig. 4-5). A model by Bergstrom and Boyce (1998) based on the Doi

and Edwards (1986) theory of reptational motion is used to model this relaxation in

ref. (Boyce et al. 2000):
(1

FY= C 1TB (4.21)
B AF -- 1

where AF =[}tr(F FtT)]l/ 2 is the flow stretch and the relaxation temperature de-

pendence is captured by an exponential expression for C

C = D exp - (4.22)

It will be shown that these relations for the molecular relaxation were not able to

fully capture the strain rate dependence for PETG. The relation is therefore modified

to better capture the observed strain rate dependence:

F = C F TB]3
'= AF[Q 1 )(4.23)
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Figure 4-5: Illustration of the tube model

Equations 4.1 and 4.14 through 4.23 describe the constitutive behavior of resis-

tance B.

Now the total stress acting on the system is the sum of the stresses in the two

resistances

T=TA+ TB (4.24)

4.2 Determining the Material Constants

4.2.1 Resistance A (Intermolecular)

The initial elastic response of the material is governed by the elastic element in re-

sistance A. The initial modulus is determined from the stress-strain curves for uniax-

ial compression, in combination with a time-temperature relationship obtained from

DMA experiments (see sec. 2.4). The equations are cast in terms of the shear modulus

and the bulk modulus. Using uniaxial compression data at 25 C and at 90 C, the

Young's modulus is found to be 1.25 GPa and 75 MPa, respectively. Assuming that

the Poisson's ratio is approximately .33 at room temperature and .49 above the glass
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transition temperature, the bulk modulus can be determined at each temperature

using the relation between bulk modulus (B), Young's modulus (E), and Poisson's

ratio (Vi):
E

B = (4.25)
3(1 - 2v)

This gives a temperature independent value for the bulk modulus of 1.25 GPa. The

temperature dependence of the shear modulus is approximated with a hyperbolic

tangent function:

1 1 5
P= (fpgi + P') -- I (PLg I - I-,) tanh(a5 (0 - 09)) + X9 (0- 09) (4.26)

where p9g is the modulus in the glassy region, M, is the modulus in the rubbery region,

AO is related to the temperature range across which the glass transition occurs, O

is the glass transition temperature2 , and Xg is the slope outside the glass transition

region (see figure 4-6). The constants y 9 , tr, and AG are determined from the DMA

data, which is scaled by a factor of 0.5 to correlate with the uniaxial compression

experiments 3. The data is then converted into shear modulus data using the relation

3EB
9B-E=(4.27)

2 The glass transition temperature is defined here as the temperature at which the material softens

from a glassy solid to a rubbery material. In the DMA data, this is indicated by the dramatic drop in

modulus with temperature around 80 C. Since the drop does not occur instantaneously, but occurs

gradually over about 5 C, the value of the glass transition temperature is taken as the temperature

half way between where the low temperature plateau ends and the high temperature plateau begins

in the DMA data.
3The factor 0.5 is chosen because it yields a good correlation between results from quasi-static

compression experiments and dynamic DMA experiments. A theoretical correlation exists between

the dynamic storage and loss modulii (G' and G") and the elastic modulus of the material (E).

To obtain this correlation, one must assume a form for the viscoelastic model (such as a Maxwell

model). The relation between G' and G" and the model parameters (stiffness E and viscosity q)

can then be derived by inserting the expression for the oscillating driving stress into the governing

differential equation. For example, given a = o exp(iwt) = (G' + iG")E as the driving stress,

substitution into the Maxwell model yields the following relations: G' = (Ew 2T 2)/(1 + W2,r 2 ) and

G" = (Ew-r)/(1 + W292), where T = q/E is a time constant and w is the frequency of oscillation.

As we are only interested here in using the DMA data to obtain information about the temperature

dependence of the elastic modulus, and not in prescribing a viscoelastic model to it, the empirical

factor of 0.5 relating the dynamic to static modulus gives adequate information.
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Figure 4-6: Description of initial modulus curve fit and parameters

For example, at 25 C, the DMA data gives a value for Young's modulus of 2.5 GPa.

This corresponds to an initial modulus of 1.25 GPa in uniaxial compression, and from

equation 4.27 the shear modulus is found to be .47 GPa at 25 C. A curve fit using

the data points at ? = -. 1 sec-i yields:

p t I = 455 MPa

PT = 25SMPa

AO = 30 K

The 90 C and 100 C data ati = -. 005 sec-I provides the information needed

to determine the slope outside the transition region, X. This value is determined to

be -0.4 MPa K for PETG.

The initial modulus in the transition region is also strain-rate dependent. This

is accounted for using time-temperature superposition to shift the glass transition

temperature with strain rate. The following expression provides a good fit for the
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relation between the glass transition temperature, 0
g, and the strain rate, P:A

* :7A < 0.00173
09 = (4.28)

Slog10 A + ( + 0* : ;>0.00173

The equivalent strain rate in resistance A, }A, is approximated as v ? , withi being

the machine strain rate. 0* is taken to be a reference transition temperature of 73 C.

The values of and ( for PETG are 3 K and 8.2263 K, respectively.

Figures 4-7 and 4-8 show how the DMA data compares with data from uniaxial

compression experiments. In figure 4-7 the DMA data is plotted along with points

for each strain rate as determined from the DMA test setup, where the cyclic loading

rate is converted into an equivalent strain rate. Figure 4-8 includes the data points

from the uniaxial compression data. These indicate good agreement between the

DMA and uniaxial test results. Figure 4-9 shows the curve fit at? = -. 1 sec- 1 , again

indicating quite good agreement, and figure 4-10 shows the time-temperature super-

position effect on the curve plotted with the data points from uniaxial compression

data. Again, very good correlation is seen.

The rate dependence of the flow stress is incorporated using the equation for a

thermally activated process:

[AG(1 - TA/).
A 7=0fA exp kO (4.29)

The intermolecular resistance, s, is temperature dependent, and is modeled as s(0) =

0.15p(O), where ji is the initial shear modulus as determined above.

The constants YOA and AG are determined from the intial flow stress at each strain

rate for a particular temperature. In this case, the 90 C data was used. Equation 4.29

is rearranged to a linear form

M In (Q) - Z = -A(4.30)

where M=1/AG and Z=Mln 7'A. A least squares fit of the data gives the values for
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Figure 4-7: PETG DMA data and reduced data points for discrete strain rates
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Figure 4-8: PETG DMA data combined with uniaxial initial modulus data (open
symbols are DMA data at the indicated strain rates; filled symbols are the compression
test data
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Figure 4-10: PETG Uniaxial initial modulus data and curve fit at various strain rates

170

- 1 Hz
- - 10Hz
- - 50 Hz

100 Hz
-.005/s
-. 01/s
-.05/s
-. 1/s
-. 5/s

- - - -1.0/s b

ca
00

S-.005/s\
. El -. 01/S \\

x -. 05/s
v -. 1/s
0 -. 5/s

-1.0/s
o -. 005/s
0 -.01/s
x -.05/s
V- -. 1/s
o -.5/s

- - -. 0/s

R .

'tj
^ I

20
L-



x

10

ni- - ~ -

-6 -4 -2
log(dy/dt) (seCW)

0

Figure 4-11: PETG Flow stress as a function of strain rate

M and Z, and in turn for AG and tOA. For PETG, the values are:

AG = 1.75 x 10-' 9J

0A -2.0 x 101 sec

Figure 4-11 shows a plot of the flow stress, TA, as a function of the logarithm

of the shear strain rate, ln j, along with the least squares curve fit of the data.

This figure demonstrates that very good agreement is obtained using the thermally

activated mechanism. It is interesting to note that the curve fit is not a straight

line. This is due to the rate dependence of the intermolecular resistance, s, which

comes in through the rate dependence of the glass transition temperature and the

shear modulus, as was discussed previously. The result is a non-linear curve for the

flow stress as a function of the logarithm of the strain rate. The 80 C data shows

particularly good correlation.
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Figure 4-12: PETG Uniaxial Compression Data, Temperature = 25 C,
plotted with the strain hardening curve

e = -. 005/s,

4.2.2 Resistance B (Network)

The material properties needed for the hardening/stiffening portion of resistance B are

an initial hardening slope, vkO, and the number of rigid links between entanglements,

N, which correlates with the effective stretch where a dramatic upturn in stress occurs.

Fitting to 25 C uniaxial compression data at t= -0.1 sec- 1 gives:

vkO 8.5 x 106 Pa

N= 7.0

Figures 4-12 and 4-13 show how well the strain hardening is captured at 25 C in

uniaxial compression. The agreement is quite good in plane strain compression as

well. The lowest strain rate data (-0.005 sec 1 ) was used in order to avoid the effects

of thermal softening due to adiabatic heating at higher temperatures.

The molecular relaxation in resistance B is temperature dependent and was orig-
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Figure 4-13: PETG Plane Strain Compression Data, Temperature= 25'C, e
-. 005/s, plotted with the strain hardening curve

inally modeled as

F =C r (43BB (AF --- 1 (-1

with C being a temperature dependent parameter:

C = D exp -RQ (4.32)

Figure 4-14 shows the result of fitting the molecular relaxation coefficient, C, to the

90' C data at a strain rate of -. 5 sec-1. This expression is inadequate in predicting

the strain rate dependence of the material behavior at 90' C, as is evident from the

extreme over-relaxation at the lower strain rates of -. 05 sec-1 and -. 005 sec-1.

To better capture the strain rate dependence, equation 4.31 is modified to be:

13

B [( AF - 1 (-3

Through trial and error curve fitting at 90 'C, 100' C, and 110' C of the -0.5 sec-1
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Figure 4-14: PETG Uniaxial Compression, Temperature = 90 C, Comparison of
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data the value of C at each temperature can be determined:

C(90 C, -. 5s-1) = 1.0 x 10- 2 3 (Pa3 s) 1

C(100 C, -. 5s-1) = 14.0 x 10- 23 (Pa3 s)-1

C(110 C, -. 5s- 1) = 150.0 x 10- 2 3 (Pa3 s)>I

and using a least-squares curve fit of these values, D and Q/R are obtained:

D = 2.5 x 10' 8(Pa3 s)-1

Q/R = 3.4574 x 104K

This fully specifies the material properties needed for this model.
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Figure 4-15: Illustration of error between simulation and experimental data

4.3 Error in Curve Fitting

In section 4.4 the simulation results using the previously defined material constants

will be compared with experimental data. Before presenting this information, it will

be useful to define an algorighm for quantifying the agreement between experimental

data and the simulated curve. To do so, we begin by defining an error parameter

to quantify the error between a simulated curve and the corresponding experimental

data. This is illustrated in Figure 4-15.

The error in stress between simulation and experiment is measured at several

discrete, equally-spaced strain values, in this case five error values are measured

(Y,..., Y5). Each error value is divided by the measured experimental stress value

at that strain level:

yi=y = - (4.34)Y EJ OlEEj r

The absolute values of these normalized error values (Yi, ... , y5) are then averaged as

follows:

1 = fly (4-35)n -zyiI
Y i=1

where ny is the number of error points. It is clear that the error value will be different

depending on the number of error points and the interval chosen to evaluate the error,
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error is calculated)

so it is important to report both the number of points and the interval of interest

when indicating the error of a particular curve fit.

As an example, in figure 4-16, experimental data for a uniaxial compression ex-

periment at 90 C and -0.05/sec is shown (solid line) with the results of a simulation

(dashed line). The error is calculated using ny = 20, with data points equally spaced

between E=0.1 and E=1.9. For this case, the error is calculated to be 0.0747, or 7.47

%. It can be seen in figure 4-16 that this represents an excellent curve fit over the

entire strain range. The calculated error value using n,= 5 is 12.54 %, using n= 10

is 8.20 %, using ny = 50 is 6.92 %, using ny = 100 is 6.54 %, and using ny = 200

is 6.59 %. Based on these numbers, it appears that using fewer than fifty evaluation

points over a strain range of 0 to 1.9 causes the calculated error to be dependent on

the number of points, so for error calculation purposes we will use ny = 100 from here

on.
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4.4 Comparison with Experimental Data

The following figures show the results of the computer simulation for uniaxial com-

pression and plane strain compression. Figures 4-17 to 4-20 show results of the uniax-

ial compression simulations at each temperature from 80 C to 110 C. Figures 4-21

to 4-26 show the same results, plotted at constant strain rate. Figures 4-27 to 4-29

show the results at constant temperature for plane strain simulations.

The figures indicate that the material model captures the general trends of the

stress-strain behavior of PETG quite well, including the initial modulus, roll over

to flow, initial hardening slope, and strain hardening. The model is very good at

predicting the temperature dependence of these various elements as well as the strain

rate dependence. Figures 4-30 and 4-31 show enlarged views of the model predictions.

Figure 4-30 shows the simulation at 90 C at different strain rates and indicates that

as strain rate increases, the model correctly predicts that the initial modulus, flow

stress, and hardening modulus all increase. Figure 4-31 shows the simulation at -.05

sec 1 at different temperatures. It demonstrates that the model correctly captures the

decrease in initial modulus, flow stress, and initial hardening modulus with increasing

temperature.

Figures 4-32 through 4-35 show the comparison between computer simulations

and the experimental data for uniaxial compression. Figures 4-36 to 4-38 show the

same comparison for plane strain. Table 4.1 lists the calculated error for each of the

curves and figures 4-39 and 4-40 show these results graphically. The model does a

fairly good job of predicting the deformation behavior up to a strain of about -1.0.

The initial modulus and flow stress are predicted especially well at 80 C, as shown

in figures 4-32 and 4-36. At higher strain levels, the model is not quite as effective

at predicting the material behavior. In plane strain, the model tends to overpredict

the strain hardening at large strains. In uniaxial compression, on the other hand, it

appears that the model is predicting too much relaxation at large strain levels. For

example, at 90 C (see figure 4-33), the model simply does not predict the dramatic

strain hardening that is observed in experiments. The trend is less pronounced at
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higher temperatures and high strain rates, but is still visible in the lower strain rates

at 100'C and 110C.

Since the material deformation is accommodated by a combination of strain due to

the deforming network and strain due to molecular relaxation, the stress-strain curves

can be decomposed into network stretch and flow stretch charts. This is approached as

follows. Using the network stretch and orientation curve as a baseline for the material

response in the absence of molecular relaxation, the strain hardening portion of each

stress-strain curve is multiplicatively decomposed into network and flow portions. For

example, under a particular set of test conditions, at a total logarithmic strain of -1.0

(an axial stretch, AT, of .368), the data gives the stress required to attain this strain.

The baseline network stretch and orientation curve, however, indicates that, in the

absence of molecular relaxation, this value of stress would have been reached at a much

lower strain level, such as -0.7 (an axial stretch, AN, of .496) if network stretching and

orientation were the only mechanism contributing to the polymer deformation. The

remainder of the deformation is accounted for by molecular relaxation. The product

of the network stretch and the flow stretch is therefore equal to the total stretch:

ANAF= AT- In this example the flow stretch, AF, equals .741. This produces one

point on the network stretch-flow stretch chart.

To illustrate, figure 4-41 shows the axial network stretch versus axial flow stretch

curves for the 90 C experimental data. As deformation begins, the material has

a network stretch and flow stretch equal to 1.0. As deformation progresses, it is

accommodated by a combination of molecular relaxation and network stretching and

orientation, and the relative amount that each contributes determines the slope of

the curve. For the lower strain rates, the initial slope of the network stretch-flow

stretch curve is steeper than at higher rates, indicating that more of the deformation

is accommodated by molecular relaxation at low strain rates. This creates the general

trend from the lower right to the upper left corner as strain rate increases. After the

polymer reaches a certain level of network stretch (at approximately AN = 0.6 for

-0.1 sec- 1 in the 90 C data), the molecular relaxation appears to cease, indicated by

the leveling off of the network stretch-flow stretch curve. This leveling off occurs at
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earlier network stretch levels for lower strain rates.

Figures 4-42 through 4-44 show the network stretch versus flow stretch for uniaxial

compression both for the experimental data and for the proposed model at various

temperatures. The plots help to explain why the model does not capture the dramatic

increase in strain hardening at large strains in uniaxial compression. In comparing

the experimental data with the computer simulations, it can be seen that the current

model (indicated by filled symbols) initially follows the same trend as the experimental

data (indicated by open symbols), but is unable to capture the cessation of flow. In

their work with PET, Llana and Boyce (1999) observed this phenomenon with PET

and attributed it to the onset of strain-induced crystallization. While PETG is non-

crystallizable, it seems to exhibit the same trend. In the next section, the model will

be revised to incorporate this temperature and strain rate dependent cessation of flow

to improve the ability of the model to capture the orientation hardening behavior of

the material.

Figures 4-45 through 4-46 show the network stretch versus flow stretch for plane

strain compression experiments and simulations. As was noted earlier, these plots

consistently show how the model tends to overpredict the strain hardening in plane

strain. Each of the simulated curves (filled symbols) lies above its corresponding

experimental curve (open symbols), indicating that the simulation is predicting less

molecular relaxation than is observed experimentally. It is also interesting to note

that the plane strain curves do not exhibit such a distinct flow cutoff as was observed

in the uniaxial compression experiments. This is likely because experiments were

only carried out to a final strain of -1.3 due to the limited size of the plane strain

compression fixture. It is suggested that if the experiments were carried out to higher

strain levels, the same flow cessation would appear in the plane strain data as appears

in the uniaxial data. This warrants additional testing in future work.
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Figure 4-20: Uniaxial compression simulation, Temperature = 110 C
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Table 4.1: PETG Error values for uniaxial and plane strain compression simulations

Strain State Temperature Strain Rate y, full range Y, up toe =1.0
Uniaxial 80"C -0.005/sec .1945 .0777
Uniaxial 80 0C -0.05/sec .1869 .0612
Uniaxial 80C. -0.5/sec .2269 .3037
Uniaxial 900C -0.005/sec .2901 .3724
Uniaxial 90 'C -0.05/sec .1102 .1095
Uniaxial 90 C -0.5/sec .1420 .1267
Uniaxial 100 0C -0.005/sec .2705 .3050
Uniaxial 100 0C -0.05/sec .1412 .1683
Uniaxial 100 C -0.5/sec .1368 .1380
Uniaxial 110C -0.005/sec .4199 .3889
Uniaxial 110C -0.05/sec .2580 .2953
Uniaxial 110C -0.5/sec .0995 .1475
Plane Strain 80 C -0.005/sec .2217 .1943
Plane Strain 80 C -0.05/sec .2949 .3520
Plane Strain 80 C -0.5/sec .1977 .2301
Plane Strain 90 C -0.005/sec .3007 .2808
Plane Strain 90 C -0.05/sec .4659 .3975
Plane Strain 90 C -0.5/sec .4563 .4410
Plane Strain 100 C -0.005/sec .3955 .3414
Plane Strain 100 C -0.05/sec .3507 .2707
Plane Strain 100 0 C -0.5/sec .2905 .2165
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4.5 Improvements to the Model

4.5.1 Cessation of Flow

To account for the cessation of flow at large network stretch, the model is modified

using the same approach as Adams et al. (2000). Equation 4.23 is modified to be:

= C (-NC-- [( )TB]3(4.36)

where ANC is a critical network stretch where molecular orientation causes molecular

relaxation to cease. This provides the functionality that as the network stretch,

AN, approaches ANC, the flow strain rate, .r;, goes to zero. When this occurs, all

subsequent straining is accommodated by the network stretch and orientation element

of Resistance B.

The temperature and strain-rate dependence of ANC is modeled phenomenologi-

cally based on the uniaxial compression data in a similar manner to Boyce et al. (2000)

ANC = )* +mlog10  P/0.0173)(4.37)

where

A* = A* + A*(9 - *) + A*(O - Q*)2 (4.38)

m = ma + mb(O - *) + mc(O - *)2 (4.39)

where A*, 4A, A* , ma, mb, and mc are fitting parameter as follows:

A* =1.06

bA*=- .0035/K

A*= .00005/K 2

ma= .06

Mb= .0065/K
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mc = -. 00035/K 2

and 9* = 363K.

The computer simulation with this modification to the material model is illus-

trated in the following figures. Figures 4-47 through 4-56 show the results for uniaxial

compression and figures 4-57 and 4-59 show the results for plane strain compression.

These figures illustrate that the model still captures the strain and temperature de-

pendence of the initial modulus, flow stress, and initial hardening modulus of the

PETG. In addition, the model is now capable of predicting the large upswing in

stress at large strains.

Figures 4-60 through 4-66 show the comparison of simulation with experiment.

Error values for these curves are shown in Table 4.2 and are represented graphically

in figures 4-67 and 4-68. It can be seen that the uniaxial compression experiments

are much better approximated with the new model, particularly at large strains. The

80 C data shows especially good agreement at all strain rates, even though the model

was not specifically fit to this data. The model also captures the behavior at 90 C

and at 100 C quite well. At 110 C the fit is not quite as good, but is still better

than without the added flow cutoff features. The plane strain simulations still rise

above the plane strain compression data, as was anticipated from the results of the

previous section.

Figures 4-69 through 4-73 again show the network stretch versus flow stretch for

the experimental data and for the computer model at various temperatures and in

both deformation modes. These plots demonstrate that this form for the molecular

relaxation cessation captures the flow cutoff quite well in uniaxial compression. For

example, in figure 4-69 the -1.0 sec 1 simulation, indicated by filled triangles pointing

left, lies virtually on top of the data for this strain rate, indicated by the open left

pointing triangles. Similar corellation occurs at other strain rates and temperatures

for the uniaxial compression experiments and simulations. In plane strain, the agree-

ment is not as good, and ways to improve upon this will be addressed in the next

section.
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Figure 4-47: Uniaxial compression simulation, Temperature 80 C

Overall, this series of experiments and simulations indicates the many features of

the model adequately represent the mechanical behavior of PETG. The initial mod-

ulus is captured well, as is verified by both DMA experiments and uniaxial and plane

strain compression experiments. The initial flow stress is captured very well using the

thermally-activated mechanism. The Arruda-Boyce model captures the strain state

dependence of the hardening curve, and the molecular relaxation expressions provide

a good representation of the temperature and rate dependent large strain behavior.
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Figure 4-49: Uniaxial compression simulation, Temperature = 100 C
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Figure 4-57: Plane strain compression simulation, Temperature = 80 C
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Figure 4-58: Plane strain compression simulation, Temperature = 90 C

30

25 F

0 0.2 0.4 0.6 0.8
-True Strain

1 1.2

- -0.005/s
- - -0.01/s
- -0.05/s

- -0.1/s
- -0.5/s

- - -1.0/s

Figure 4-59: Plane strain compression simulation, Temperature = 100 C
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Table 4.2: PETG Error values for uniaxial and plane strain compression simulations
with flow cutoff

Strain State Temperature Strain Rate y, full range p, up to E = 1.0
Uniaxial 80 C -0.005/sec .0675 .0668
Uniaxial 800C -0.05/sec .0763 .0559
Uniaxial 800C -0.5/sec .2093 .3156
Uniaxial 90 C -0.005/sec .2127 .3650
Uniaxial 90 C -0.05/sec .1474 .1195
Uniaxial 900C -0.5/see .1118 .1393
Uniaxial 1000C -0.005/sec .2124 .3004
Uniaxial 100 C -0.05/sec .0984 .1649
Uniaxial 1000C -0.5/sec .1819 .1449
Uniaxial 110'C -0.005/sec .3755 .3809
Uniaxial 110 0C -0.05/sec .2259 .2933
Uniaxial 1100C -0.5/sec .1334 .1456
Plane Strain 80' C -0.005/sec .1521 .1417
Plane Strain 80' C -0.05/sec .4132 .4160
Plane Strain 80' C -0.5/sec .3041 .2702
Plane Strain 90 0 C -0.005/sec .3982 .3042
Plane Strain 90' C -0.05/sec .6230 .4419
Plane Strain 90' C -0.5/sec .5794 .4805
Plane Strain 100' C -0.005/sec .4705 .3655
Plane Strain 100' C -0.05/sec .4004 .2898
Plane Strain 100' C -0.5/see .3305 .2330
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4.5.2 Orientation Angle Parameter and a New Approach to

Reptation

From the results in the previous section, it is clear that the model is inadequate at

predicting how the material behavior depends on the state of strain. The model can

capture uniaxial compression data very well, but is unable to capture the large strain

behavior in plane strain compression. An alternate approach to modeling molecular

relaxation will be presented in this section, which is shown to capture both uniaxial

and plane strain compression quite well for PETG, and which requires fewer fitting

parameters than the previous model.

As molecular relaxation is, in effect, a viscous flow problem, we begin by looking at

an effective "viscosity" of the polymer. To do this, we take a set of stress-strain curves

over a range of strain rates, remove that portion of the behavior which is associated

with intermolecular interactions (initial modulus and flow stress) and extract data

at a constant level of strain (see figure 4-74.) Each data point at a particular strain

level is a point along a stress-strain rate curve. This can also be represented as a

viscosity-strain rate curve since the definition of viscosity is simply stress divided by

strain rate:

T
'r= f, N = -- (4.40)

Plotting one of these stress-strain rate curves (and the corresponding viscosity-strain

rate curve) at a given level of strain, we obtain a plot as shown in figure 4-75. The

viscosity-strain rate plot is even more descriptive if it is drawn using a log-log scale as

shown in figure 4-76. We see that log viscosity and log strain rate are linearly related.

If we plot viscosity versus strain rate at several different strain levels, we find that

the curves are parallel straight lines, as shown in figure 4-77. When plane strain data

at the same temperature is plotted along with the uniaxial data, it appears that the

data for corresponding axial strain levels lies very nearly on top of each other. (see

figure 4-78).

However, axial strain is not a particularly good measure for developing a consti-

tutive model, as it is a function of the testing conditions and would be rather difficult
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to extend to general three-dimensional loading configurations. Instead, we seek a

more physically-based parameter which is able to capture the behavior of both plane

strain and uniaxial compression data. One such candidate which is found to work

well is what we will term an orientation angle or orientation parameter, a. This can

be thought of microstructurally by thinking back to the 8-chain model (figure 4-79),

in which the stress was related to the stretch of a chain due to deformation. During

deformation, the chains also rotate and align in the direction of flow, so another pa-

rameter which can be useful to look at is the angle these chains make with a given

axis, or with each other.

If we consider a unit cube with a chain extending from its center to one of the

corners (figure 4-80), the vector describing this chain can be expressed by direction

cosines (cosines of the angles between the vector and each of the coordinate axes,

ai, ai2, a3 ). Initially, each of these angles will have the same value, 54.7 ', or 0.9553

radians. As the deformation continues, the angles between the three principal stretch

axes will no longer be equal. It would appear that the maximum of these angles (which
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Figure 4-79: Schematic illustrating the 8-chain model

Figure 4-80: Illustration of the unit cube and the angles
principal axes

between a chain and the

is a measure of how far the chains are getting from a particular axis or alternatively

of how well aligned the chains are getting with each other) should be of interest. If

we plot instead of stress-strain curves, stress versus maximum angle curves (shown

in figure 4-83), we find that the plane strain and uniaxial compression data collapses

quite nicely and that all curves tend to reach their limiting extensibility at a common

value of the maximum angle. The orientation angle at which this occurs may be

thought of as some indication of registry or meso-order.

It should be interesting to consider how this orientation angle is related to some-

thing measurable, such as the Hermans orientation function: 1(3 < cos2 4 > -1),

where # represents the angle between the axis of a polymer chain and the axis of
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deformation, as in the case of uniaxial tension. If we assume affine deformation and

use Gaussian chain statistics, this orientation function is related to the elongational

stretch as:
3<cos2 q> --1 1 2!4

2 - A (4.41)
2 5\A/

This relation between angle # and stretch A is shown in figure 4-81. Also plotted, for

comparison, is the minimum angle obtained using the 8-chain geometric construction.

As the deformation mode is uniaxial tension, the angle # obtained from the Hermans

orientation function should correspond to a minimum angle (amin) which decreases

with deformation, instead of a maximum angle. This could be computed in two

ways: (1) as the minimum of the three angles between the chain and the principal

stretch axes (shown as a dashed line in figure 4-81) or (2) as the complement of amax

computed above (shown as the dash-dotted line in figure 4-81). Later in this chapter,

we will adopt the second definition for amin. It should be noted that for either

choice, the curve illustrating the relation between angle and stretch has a decidedly

different shape than the angle in the Hermans orientation function, reminiscent of the

difference between affine deformation and pseudo-affine deformation, as described in

Ward (1975) and as illustrated in figure 4-82.

We can again plot viscosity-strain rate curves, but this time at constant angle,

instead of at constant axial strain. This is shown in figures 4-84 and 4-85. It can be

seen that the viscosity-strain rate curves at a given value of maximum angle coincide

for plane strain and uniaxial compression data over all angles.

Since the viscosity versus strain-rate curves give straight lines, it seems simple

enough to use a power-law model for the material behavior at a particular strain

level:

w= m" ==b (M) (4.42)

where m and n are constants. Rearranging, we obtain

= CT(/n) (4.43)
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where C - (1/m) 1 /"). The power-law exponent, n, is obtained from the slope of the

curves on the log viscosity-log strain rate plot, which is constant with angle, a. The

curve fit gives 1/n = 6.67, which is a reasonable value for the power-law exponent.

The parameter C is a measure of the shift in the log viscosity-log strain rate curve,
and is therefore a function of angle, a. A curve fit gives the following expression:

C = C(amax) = g(amax)-38 (4.44)

where amax is the value of the maximum angle between a chain and the principal

stretch axes, in radians. The exponential value of -38 is not very convenient, nu-

merically, nor is it very physical, so we instead cast the equations in terms of the

complement of &max, which we will call amin. Physically, amim is proportional to

how closely aligned two of the neighboring eight chains have become. If we use this
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formulation, equation 4.44 becomes:

C = C(amin) = hamin)6-67 (4.45)

With this formulation the exponent obtained is identical to the power-law exponent

obtained before, suggesting that this orientation parameter represented by amin is

fundamentally related to the mechanism involved in molecular relaxation. 4

The constants g and h in equations 4.44 and 4.45 are temperature dependent as

in the previous model:

h = Dexp (_ 7Q) (4.46)

Again, we find that this formulation under-predicts the material behavior at very

large strains and thus need to incorporate a cessation to flow:

/ mia -1
a = " Cr /n (4.47)

ac

where ao is the initial value of the complement to the maximum angle (ao=90 -

54.7 = 35.3 = .616 rad). ac is determined by a curve fit and is found to be

0.05 rad = 2.9 . The same value of ac is obtained at every temperature and strain

rate considered, thus eliminating the need for complicated temperature and rate-

dependence fitting constants (as compared with the expressions in equations 4.38

and 4.39). This rate and temperature independence of ac lends confidence to the

concept that the orientation parameter is the governing variable in this molecular

relaxation mechanism, and particularly to the cessation of flow.

For incorporation in the constitutive model previously developed, equation 4.47

becomes:
amit _ih( nTB) (4.48)

ac

4Returning to the original power-law viscosity formulation, we have r = r( ) = mtn. If we want

to add a dependence on strain, it could be done as follows: r = mjnf (E). Rearranging, we obtain

= (r/(mf(E)))1/n, which from above yields f(E) = 1/amin. This indicates that the viscosity is

inversely proportional to the orientation parameter ampn
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which can be rewritten in a non-dimensional form as:

F;= h (c C&min TB )1'/fl(449)
B- 1 ac k

with

a, = 0.05 rad

O = 0.616 rad

ukb = 8.5 MPa

and the temperature dependence is as follows:

h(90 C) = 0.0290 seC

h(100 C) = 4.4716 seC'

giving

D = 1.25 x 1080 seC-1

Q/R = 6.823 x 104 K

Using this new approach, the following simulation results are obtained. Figures 4-

86 through 4-95 show the results for uniaxial compression and figures 4-96 and 4-98

show the results for plane strain compression. These figures illustrate that the model

still captures the strain and temperature dependence of the initial modulus, flow

stress, and initial hardening modulus of the PETG. In addition, the model is now

capable of predicting the large upswing in stress at large strains.

Figures 4-99 through 4-105 show the comparison of simulation with experiment.

Error values for these curves are tabulated in Table 4.3 and are shown graphically

in figures 4-106 and 4-107. It can be seen that the uniaxial compression experiments

are very well approximated with the new model at all strain levels, strain rates and
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Figure 4-86: Uniaxial compression simulation, Temperature = 80 C

temperatures. Plane strain behavior is predicted quite well with the new model, as

well.
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Figure 4-87: Uniaxial compression simulation, Temperature = 90 C

40F-

'

/ .

1
-True Strain

1.5

- -0.005/s
- - -0.01/s

- -- -0.05/s
- -0.1/s

- -0.5/s
- - -1.0/s

2

Figure 4-88: Uniaxial compression simulation, Temperature = 100 C
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Figure 4-89: Uniaxial compression simulation, Temperature = 110 C
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Figure 4-91: Uniaxial compression simulation, 5 = -.01/s
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Figure 4-92: Uniaxial compression simulation, 5 = -.05/s
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Figure 4-98: Plane strain compression simulation, Temperature = 100 C
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Table 4.3: PETG Error values for uniaxial and plane strain compression simulations
with flow cutoff and viscosity representation

Strain State Temperature I[Strain Rate g, full range Y, up to 6=1.0
Uniaxial 800C -0.005/sec .1017 .1196
Uniaxial 800C -0.05/sec .1799 .1533
Uniaxial 80C -0.5/sec .0884 .1237
Uniaxial 900C -0.005/sec .1393 .1301
Uniaxial 903C -0.05/sec .0828 .1018
Uniaxial 90C -0.5/sec .1404 .1748
Uniaxial 100C -0.005/sec .1219 .1514
Uniaxial 100C -0.05/sec .1683 .2339
Uniaxial 100C -0.5/sec .1676 .2522
Uniaxial 110 C -0.005/sec .3896 .2284
Uniaxial 110 C-0.05/sec .2235 .2838
Uniaxial 110C -0.5/sec .2855 .3625
Plane Strain 80 C -0.005/sec .2122 .2094
Plane Strain 80 C -0.05/sec .1408 .1522
Plane Strain 80 C -0.5/sec .0430 .0507
Plane Strain 90 C -0.005/sec .1996 .1465
Plane Strain 90 C -0.05/sec .4133 .3834
Plane Strain 90 C -0.5/sec .2101 .2090
Plane Strain 100 C -0.005/sec .2295 .1553
Plane Strain 100 C -0.05/sec .1791 .1662
Plane Strain 100 C -0.5/sec .1995 .2367
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4.5.3 Comparison with the Doi-Edwards Model

As the molecular relaxation model previously developed is intended to capture the

phenomenon of chain reptation, it should be interesting to compare the results to

the theory of Doi and Edwards (1978, 1980, 1986). To do this, we make use of the

equations contained in reference (Doi and Edwards 1978). The components of the

stress tensor as a function of time are taken to be:

cap(t) = Go j dt'p'(t - t')Q0 Q [F (t, t')] (4.50)

where
pft) z 8 (-t)-

'()2 exp - (4.51)
p odd P2 2 T

or
8'=exp t 2 (4.52)

p odd r2Td Td

is a relaxation modulus, rp or Td being a time constant.5

Also,

Go = 3ckO (-) (4.53)

where c is the number of molecules per unit volume, L is the contour length, and a

is the length of a primitive chain segment. Thus,

c (L)= 1(4.54)

which is the chain density used previously in the 8-chain model (refer to equa-

tion 4.17.) Additional variables are F, the deformation gradient; o-og, the compo-

nents of the Cauchy stress tensor; u, the unit tangent vector to the polymer chain

5In models such as the Doi-Edwards model, the phenomenon of reptation is generally interpreted
as a relaxation or softening of the material's modulus with time (as in a stress-relaxation experiment);
hence p' is a function of time and for a given deformation F the stress will relax over time through
the change in modulus. This is in contrast to the solid mechanics approach, in which the modulus
is independent of time, but the deformation is decomposed into an elastic and viscous (plastic) part
(F = FeFV). Only the elastic part gives rise to stress in the material. Over time, viscoplastic
relaxation is interpreted as a decrease in the portion of deformation which is elastic (Fe) and a
corresponding increase in the viscous deformation (FV).
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segment; t, the current time; t', a reference time in the past; k, Boltzmann's constant;

0, temperature; and Qap is given by:

(F - u)a,(F - u)o 1
QaQ(F) = K --;-fl 16 (4.55)

\F - ul 3 )0

{ d2u (F -uj(F-u)g l_ } (4.56)S 47r IF - U12 3

where ( )0 indicates a volume average and the integral in equation 4.56 is over the

surface of a unit sphere. This is essentially an orientation tensor which accounts for

the deformation gradient operating on the unit vector along the chain backbone.

For the specific case of uniaxial deformation in the 3-direction,

0 0

F= 0 - 0 (4.57)

0 0 A

and

QXX 0 0

Q= 0 QVY 0 (4.58)

0 0 QZZ

also, Q22 = QyL because of symmetry. The quantity of interest is therefore Q, -Q,

which from above is a function of A:

A2U2 _ \--l2

Q - Q = F3 (A) r A Z(4.59)

The integral which is represented by this averaging can be evaluated analytically

using spherical coordinates for u and by computing the average over the surface of a

unit sphere. The derivation is shown in Appendix A. The resulting equations given
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by eqns A.7, A.10, and A.15 are repeated here as equation 4.60:

3 A3 tanh--1(vi1) 
- _2 1-A3 ( V--2

Qxx = 0 3 _ I =
3 A3 ) -

2,\3_1gg --

To calculate the stress during uniaxial deformation, we proceed as follows:

UZZ - 7XX =Go / dt'p'(t, t')Qzz - Go f0dt'p'(t,t')Q'x
= Go f0dt'lu'(t,t') [Qzz - Q |

Gof0 dt' 282
= p odd P2 FThp

8
Godd272

p odd T b

tJ dt'exp ( (t F3 (A (tIt'))

/Irt
A (t, t') = exp (jdt"5(t"

For loading at a constant strain rate starting at t=O,

{texp (it)
exp((t-t'))

Equation 4.61 becomes:

=0Go 282 [dt'exp

p odd WTIP

= Z dt' exp

(t -t
tP

F3 (A (t, 7t') )

F3 (A(t,t'))

[ dtexp((t-t')
=0 Z p t p -

F3 (A(t, t'))
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F3 (A) =EQzz (4.60)

. 3 _ >1

Note that

(4.61)

(4.62)

t' < 0

t' ;> 0

czz -- axx

(4.63)

.:

- [Qzz - Qxx]

)

+ dt' exp -(t -t') F A(,t)



I dt' exp (t - t') F3 (exp (tt))
\-7Tp/

+ dt' exp
(t-t'))F
- F3 (exp (Wt - t')))

ZF3 (exp (51)) dt' exp -(t
f-oo Tp

+ ZJ t dt'exp ( t')
J0 iTp

F3 (exp (5(1

The first integral can be solved analytically:

0 -t I'
- dt' exp - exp -

-t0 t'
= exp - dt' exp-

T7 -7oo TP

Substituting a = t':

dt'exp (t t')

-0 Ty

-trcc -s
= exp -- ds exp

77, 0 7 9p

-t
= Tpep

The second integral cannot be solved analytically, but may be simplified by the sub-

stitution s = t - t':

dt' exp -t F3 (exp( (t-t'))) = ]ds exp -F 3 (exp (Es))
TP ( To )

(4.67)

Finally,

-t
0-ZZ - 07 = ZF3 (exp (t)) Tp exp-

Tp

where

+ Z tds exp -- F3 (exp (s))
( Tp

8
z=Go>j 2

p odd p27T2T

(4-68)

(4.69)

Using equation 4.68, the stress can be calculated as a function of time for a given

strain rate. Figure 4-108 shows stress-strain curves calculated from equation 4.68
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0dt' exp (t-i
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for a variety of strain rates under conditions of uniaxial compression. The following

constants were used:

Td =40 sec

u'kO = 8.5 MPa

and only one term was included in the summation over p. Including additional terms

serves to soften the rollover portion of the stress-strain curve. As in the proposed

model, this data can again be converted into log viscosity-log strain rate curves.

This is shown in figure 4-109. And we can similarly plot these curves at various

values of the orientation parameter. Figure 4-110 shows this, comparing the Doi-

Edwards model to the model proposed in section 4.5.2. A few differences are readily

apparent. (1) The slope of the Doi-Edwards model curves is slightly steeper than

in the proposed model. This slope can be adjusted somewhat. Decreasing the time

constant, Td, leads to a slight decrease in slope. Alternately, increasing the number

of terms which are retained tends to make the curves slightly more shallow as adding

terms smoothes out the transition from below Td to above Td. Even incorporating

both these changes the Doi-Edwards model is still incapable of reaching the same

slope as in the proposed model. A reptation model which includes effects of chain

stretching may better capture this trend as chain stretch would cause an increase in

viscosity at higher strain rates as compared with a model witout chain stretch, thus

leading to a decrease in slope.

(2) The Doi-Edwards model departs from linearity at a strain rate of approxi-

mately 0.025 sec-. This corresponds to the reciprocal of the selected time constant,

Td, which in this case was 40 sec. A higher time constant, on the order of 1000 sec

would provide for a linear curve through the range of strain rates considered. (3) In

the Doi-Edwards model, the curves become much closer together as the orientation

parameter decreases. This is in contrast to the proposed model, as well as in contrast

to the data, which does not show such a trend. This can be explained as being due to

the inability of the Doi-Edwards model to capture strain hardening. In figure 4-108 it
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is clear that at large strains the curves level off and show no strain hardening at very

large strains. More recent models incorporate means of capturing strain hardening

by including finite extensibility of the polymer chains (see, for example Janniruberto

and Marrucci (2001), Bhattacharjee, et al. (2002), or McLeish (2002).)

4.6 PETG Model Summary

The model developments presented in this chapter were progressively able to capture

the features of the mechanical behavior of PETG above the glass transition temper-

ature. The final model consists of four basic elements: (1) a linear-elastic spring to

capture the rate and temperature dependence of the initial modulus; (2) a thermally-

activated flow rule, to account for the rate and temperature dependent rollover to

flow; (3) an 8-chain network model, to account for strain hardening due to molecular

stretching and orientation; and (4) an element to account for molecular relaxation,

which provides for a rate and temperature dependence of strain hardening. The

molecular relaxation model is found to depend on an orientation angle parameter.

Additionally, once the orientation parameter reaches a critical value, which is found
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to be independent of rate and temperature, molecular relaxation ceases.

The model is very successful at capturing the trends observed in the experimental

data of Chapter 2. Improvements to previous models came primarily in the imple-

mentation of the molecular relaxation model. In order to capture the strain state

dependence of the material behavior, a new orientation parameter was developed.

Not only was this approach successful in capturing the behavior of the material in

both plane strain and uniaxial compression, but it also provided a convenient mea-

sure for flow cessation at large deformations. Previous models (Adams et al. 2000;

Boyce et al. 2000) identified the need to incorporate flow cessation in the model in

order to capture large strain hardening in PET. This was attributed to the onset

of strain-induced crystallization. The same cessation is needed in order to capture

stress-strain trends in PETG, where it is known that crystallization does not occur.

This suggests that the cessation of molecular relaxation is due to orientation of the

chains, and not solely to strain-induced crystallization. The same previous models

used a critical value of network stretch to identify the point at which molecular relax-

ation would cease; this value was found to depend on rate and temperature. Using

the newly-defined orientation angle parameter, molecular relaxation is found to cease

at a value of 0.05 radians, a value which is independent of rate and independent of

temperature.

This new molecular relaxation model is expressed in a form which can be easily

compared to other models from the field of non-Newtonian fluid mechanics. It is found

to give good agreement with the model of Doi and Edwards (1978, 1980), in terms of

the slope of the power-law region of the curve, provided the correct constants are used

in the Doi-Edwards model. A major discrepancy exists between the models in terms

of the shift in the viscosity-strain rate curves with increasing strain (decreasing czi).

The stress (viscosity) in the Doi-Edwards model levels off as strain level increases,

in sharp contrast to the actual material behavior. It is suggested that a polymer

viscosity model which includes chain stretching may be able to better capture the

trends observed in the experimental data. This will be an interesting subject for

future work.
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Chapter 5

Constitutive Model applied to PET

5.1 Review of the Model

We begin by summarizing the final model obtained for PETG, which will be compared

with data for PET.

The constitutive response is interpreted as two mechanisms which resist defor-

mation in the presence of an applied load: a resistance due to intermolecular forces

and a network resistance due to molecular stretching and orientation. This is shown

schematically in figure 5-1 with the two distinct resistances represented as A and B.

Resistance A arises due to the intermolecular resistance between neighboring poly-

mer segments. This gives the material its initial stiffness and results in a finite stress

at which the polymer will flow, termed the flow stress. In resistance B, network

stretching and orientation of the polymer chains causes the polymer to stiffen and

strain harden at large strains. The nonlinear dashpot allows for molecular relaxation

at higher temperatures and lower strain rates. The two resistances are modeled as

being in parallel, so the deformation gradient in each network is equal to the total

deformation gradient,

FA =FB =F (5.1)

The descriptions of the intermolecular (A) and intramolecular (B) resistances are

summarized below.
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Figure 5-1: Schematic representation of the constitutive model
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5.1.1 Resistance A: Intermolecular Interactions

The deformation gradient of resistance A is decomposed into elastic and plastic com-

ponents in a multiplicative manner

FA = F'F (5.2)

and is then decomposed into stretch and rotation components

F = Re (5.3)

F = VPRP (5.4)

The rate kinematics are described by the velocity gradient, LA

LA = FAFA (5.5)

By substitution of the elastic and plastic contributions to the deformation gradient

this becomes

LA = FW 1 + FFF 1F-1 = L + J (5.6)

where LP = Di + W. The representation is made unique by prescribing the spin

to be zero: WP = 0.

The rate of stretching is constitutively described by

b -= ANA (5.7)

NA is the normalized deviatoric stress in resistance A

NA = T' (5.8)

[11 1/2

2 A A (5.9)

247



TA is related to the elastic deformation gradient by the constitutive relation

1
TA - -97e[n Ve] (5.10)

JAA

where JA = det F5' is the volume change, 9 e is the fourth order tensor of elastic

constants, and lnV' is the Hencky strain. The plastic strain rate, &, is assumed to

follow a thermally activated process

%OA [AG(1 - rA/)]

IA = OA exp kO J (5.11)

where YOA is the pre-exponential factor, AG is the activation energy which must be

overcome for flow to begin, s is the shear resistance, taken to be . 1 5P (p is the shear

modulus), k is Boltzmann's constant, and 0 is the absolute temperature.

Equations 5.1 to 5.11 complete the constitutive prescription for resistance A.

5.1.2 Resistance B: Network Interactions

Two mechanisms are involved in the deformation of resistance B: first, the stretching

and orientation of the polymer chain network and second, molecular relaxation. Re-

sistance B can be thought of as a non-linear spring in series with a viscous element

(see figure 5-1). As such, the deformation of this element can also be multiplicatively

decomposed into a network and flow portion:

FB FNFF (5.12)

The velocity gradient is then

LB = FB-FB (5.13)

LB =#FN-1 +FF F-1FN- = L4 + IL (5.14)

Again, 1 D= b + WV is made unique by setting the spin to zero, VV = 0.

The Arruda-Boyce eight-chain rubber elasticity model (1993b, 1993a) is used to

prescribe the stress arising from the network orientation of the polymer. The stretch
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of each chain in the network is given by an effective chain stretch, or the root-mean

square of the distortional applied stretch: AN = [tr(BN)/ 2 , where fN =

= (JB)-1/ 3 FN and JB = det F'. The relationship between the chain stretch and

the network stress is then

1 vkbV _(N --
AN91 [B - AN)2J] (5.15)

TB JB 3 AN - ,7NI.

The parameters in this expression are as follows: v is the chain density, N is the

number of rigid links between entanglements, and uvk is a rubbery modulus, which

is proportional to the initial hardening modulus of the strain hardening curve, or the

initial slope of the stress-strain curve at the onset of flow, before much hardening has

occurred. -- 1 is the inverse Langevin function given by 2 (/) = coth(r) -(1/l).

This derives from a non-Gaussian probability function which accounts for the fact

that the chains have a finite extensibility. -1[AN/VT] provides the functionality

that as AN approaches x/W, the stress rises dramatically.

The rate of molecular relaxation is given by

B =YjNB (5.16)

where NB is
1

NB T' (5.17)
2TB

-1 T / 2(-8
TB - B B (5.18)

and TB is prescribed using the Arruda-Boyce model. The only remaining unknown

is the rate of relaxation, - {. The assumed mechanism is chain reptation, the physical

picture being one of polymer chains sliding through tube-like paths created by the

entangled chains around them. The model used is that which was developed in

section 4.5.2:

= 2 l) 2 (5.19)
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C = h '(in) 1/n (5.20)
\('c /

where the relaxation temperature dependence is captured by an exponential expres-

sion for h

h = Dexp (-t)(5.21)

Equations 5.1 and 5.12 through 5.21 describe the constitutive behavior of resis-

tance B.

The total stress acting on the system is the sum of the stress in the two resistances

T = TA + TB (5.22)

5.2 Model Compared to PET Using PETG Mate-

rial Constants

To begin to understand the differences between the constitutive behavior of PET

and PETG, we superimpose the model previously obtained and fit to PETG onto

the data for PET. This is shown in Figures 5-2 to 5-8. Error values for these curve

fits are shown in Table 5.1 and are graphically represented in figures 5-9 and 5-10.

It can be seen that overall good agreement is obtained, with no modification to the

PETG material constants. By looking at figure 5-9 it is clear that the error becomes

worse as the temperature increases. Also, by examining figures 5-3, 5-4, and 5-5,

it appears that it is the temperature-dependence of molecular relaxation which is

not being captured with the current material parameters. In the next section, the

corresponding material constants are adjusted to obtain a better fit to the PET data.

The strain state dependence of PET is fairly well captured, with the exception of

the behavior in plane strain compression at very large strains. As the stress at this

temperature rises very dramatically at large strains, it is suggested that strain-induced

crystallization may be playing a role at this temperature in plane strain compression.
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Table 5.1: Error values for uniaxial and plane strain compression simulations, PET
data with PETG material constants

Strain State Temperature] Strain Rate Y, full range p, up to 'E 1.0
Uniaxial 80 0C -0.005/sec .1800 .2540
Uniaxial 800C -0.05/sec .1512 .2085
Uniaxial 80'C -0.5/sec .2033 .1517
Uniaxial 90 C -0.005/sec .2878 .1309
Uniaxial 900C -0.05/sec .1219 .1013
Uniaxial 90 C -0.5/sec .0892 .1253
Uniaxial 1000C -0.005/sec .1170 .1754
Uniaxial 100' C -0.05/sec .2840 .3272
Uniaxial 1000C -0.5/sec .2522 .3141
Uniaxial 110' C -0.005/sec .3579 .3365
Uniaxial 110'C -0.05/sec .4511 .4740
Uniaxial 110' C -0.5/sec .5201 .5544
Plane Strain 80' C -0.005/sec .3604 .3680
Plane Strain 80' C -0.05/see .3220 .3690
Plane Strain 80' C -0.5/sec .1234 .1305
Plane Strain 90' C -0.005/sec .3211 .2933
Plane Strain 90' C -0.05/sec .2087 .2319
Plane Strain 90' C -0.5/sec .2464 .2088
Plane Strain 100 * C -0.005/sec .1850 .2285
Plane Strain 100 'C -0.05/sec .2530 .3312
Plane Strain 100' C -0.5/sec .2733 .2800
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5.3 Material Constants Fit to PET

The material constants are next adjusted to better capture the behavior of PET,

as listed in table 5.2. Those constants which have been modified are indicated in

boldface. The results of modifying the constants is shown in Figures 5-11 to 5-15.

Error values for these curve fits are shown in Table 5.2 and are represented graphically

in figures 5-16 to 5-17.

5.4 Results and Discussion

The model is able to capture many of the features of the PET data, including the ini-

tial modulus, rollover to flow, the gradual strain hardening, and the start of dramatic

strain hardening at large strains. It is especially able to capture the dependence on

strain rate, temperature and strain state. This is significant in that it indicates that

strain-induced crystallization must play a minor role, if any, in the deformation behav-

ior of PET during compressive loading. One area where crystallization, or at the least,
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Table 5.2: Material constants for PETG and PET

Material Property Symbol PETG Value PET Value Units
Glassy Modulus Ggj 455 455 MPa
Rubbery Modulus G, 15 15 MPa
Temperature Shift AO 30 30 K
Transition Slope X9 --2.Ox10--5  -2.Ox10--5 MPa K--
First Rate Shift Factor a 3 3 K
Second Rate Shift Factor b 1.226 1.226 K
Bulk Modulus B 1.25 1.25 GPa
Pre-exponential Factor YOA 2.0 x10' 2  2.0 x10 sec-i

Activation Energy AG 1.8 x10- 19  1.8 x10- 19  J
Rubbery Orientaion Modulus CR8.5 8.5 MPa
Entanglement Density N 7.0 7.0
Temperature Coefficient D 1.25 x10 80  4.147 x10 3 6  sec-
Second Temperature Parameter Q/R 6.823 x10 4  3.183 x10 4  K
Power-law Exponent n 6.67 6.67
Cutoff Orientation ac 0.05 0.05
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Table 5.3: Error values for uniaxial and plane strain compression simulations PET
data with fit constants

Strain State Temperature Strain Rate y, full range -, up to e 1.0

Uniaxial 90 C -0.005/sec .2837 .1312
Uniaxial 900C -0.05/sec .1216 .1015
Uniaxial 900C -0.5/sec .0891 .1258
Uniaxial 100 C -0.005/sec .2823 .2371
Uniaxial 1000C -0.05/sec .1210 .1825
Uniaxial 1000C -0.5/sec .1720 .2264
Uniaxial 110 C-0.005/sec .4525 .6382
Uniaxial 110 C -0.05/sec .1152 .1399
Uniaxial 110 C -0.5/sec .1495 .2438
Plane Strain 90 C -0.005/sec .3216 .2937
Plane Strain 90 C -0.05/sec .2093 .2324
Plane Strain 90 C -0.5/sec .2471 .2095
Plane Strain 100 C -0.005/sec .3337 .2970
Plane Strain 100 C -0.05/sec .3137 .3276
Plane Strain 100 C -0.5/sec .1960 .2234
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Figure 5-16: PET Uniaxial compression error values using fit constants
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the development of a highly ordered mesophase, may be occurring in PET, causing

a discrepancy at very large strains in plane strain compression. That this discrep-

ancy between the simulation and experimental data would occur only in plane strain

compression, and most notably at 90 C (see figure 5-11) is due to the highly ordered

state the polymer is in in this deformation state and at this temperature. At higher

temperatures, molecular relaxation plays a larger role, and in uniaxial compression

the molecules are oriented in a plane, but not as preferentially in one direction as in

plane strain compression. It is expected that the addition of a crystallization criteria

accounting for very large states of orientation in PET could capture this large upturn

in stress, which the model is currently unable to capture. For the vast majority of

the experimental data considered, however, the model provides very good agreement

(see figure 5-16). It should be noted that in a deformation process such as stretch

blow molding, the deformation mode is primarily biaxial in nature, corresponding to

a deformation state similar to that for uniaxial compression. The good agreement

obtained to the uniaxial compression experiments therefore lends confidence to the

ability of this model to give insight to reheat stretch blow molding simulations.
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Chapter 6

Model Extension Using

Anisotropic 8-chain Model

6.1 Difference between Orientation Angle Param-

eter and Molecular Chain Angle

In section 4.5.2, we developed an orientation angle parameter which was found to

be an excellent measure to account for how molecular relaxation, and particularly

the cessation of molecular relaxation, depend on strain and strain state. This de-

velopment was motivated by the construction of the 8-chain model. The orientation

angle parameter was taken to be the complement of the angle between one of the 8

'chains' and the most distant principal deformation axis (see figure 6-1, crin is the

orientation angle parameter). The orientation angle parameter was then calculated

from the principal stretches of the deformation gradient in resistance B, A1, A2 , and

A3 . The principal stretches are computed by performing an eigenvalue decomposition

on the stretching portion of FB, which is denoted by VB. Equivalently, the prin-

cipal stretches can be computed by finding the eigenvalues of V2 = FBFT = BB,

which eigenvalues are the squares of the principal stretches. The orientation angle
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Figure 6-1: Schematic illustrating the orientation angle parameter

parameter, amin is then:

7. - r = _1 Amin -r o-1 Amin (6.1)
amn Co - -COS C 8 m n

where Amin is the minimum of the three principal stretches. In the model presented

thus far, the elastic-plastic decomposition provides that stress is generated due to

elastic deformation. In other words, the only portion of the deformation which goes

into deforming the 8-chain model and thus in generating stress via network stretching

and orientation is Fl. Thus, if one were to calculate the chain angle imposed on

the 8-chain model at a particular point in the deformation, it would be decidedly

different from the orientation angle parameter calculated above, as the 8-chain model

is deformed by F' whereas the orientation angle parameter is calculated from FB.

This is a subtle point which deserves further elaboration.

Figure 6-2 shows the kinematical description of a general elastic-plastic decompo-

sition. Under the influence of a deformation gradient, F, a body is deformed from its

configuration at time t=O, denoted by BO, to a new configuration at time t, denoted

by Bt. We can imagine that if we were to elastically unload the body, by applying an

inverse elastic deformation gradient, Fe-1, all that would remain would be the plastic

deformation, FP. Thus, F = F'FP is the elastic-plastic decomposition.
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Figure 6-2: Kinematical description of elastic-plastic decomposition

This decomposition is simple to understand for a polycrystalline material, such

as a metal. Figure 6-3 illustrates the concept of the combination of elastic and plas-

tic deformation to the underlying crystal lattice. Elastic deformation is the result

of lattice deformations (bonds stretching and rotating), and is completely reversible

(a). Plastic deformation, on the other hand, is accommodated by dislocation motion,

which occurs in the presence of the underlying elastically-stretched lattice. Upon elas-

tic unloading, the lattice stretching is recovered, but the plastic deformation remains

(b).

An analagous decomposition was used for the polymeric material in Chapter 4,

as is conventional in the literature. The analog is illustrated in figure 6-4. Elastic

deformation is accommodated by stretching and orientation of the polymer network

(here represented by the 8-chain unit cube) and this stretching is what generates

stress in the material. Plastic deformation, on the other hand, does not stretch the

network, but is rather a stress-induced, rate-dependent flow, driven by stress but

providing no increase in stress. Upon elastic unloading, the network returns to its
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Figure 6-3: Elastic-plastic decomposition for a polycrystalline material

isotropic state and only the plastic deformation is permanent. Thus, the polymer

network only undergoes a deformation equal to F' (or FN in our model) and the

chain angles calculated from the 8-chain network deformation will also be related to

F N

If we wish to tie the orientation angle parameter mentioned previously to the

angle of a chain in the polymer network description, a different modeling approach

must be adopted such that the natural state of the polymer is allowed to evolve during.

plastic deformation. In such an approach, the network model will deform affinely with

the macroscopic deformation (thus tieing chain angle to the macroscopic orientation

angle parameter), and plastic deformation will serve to evolve the elastically unloaded

configuration, such that the stress-free unloaded state will no longer be isotropic. This

is illustrated in figure 6-5, where Bf denotes the stress-free, or elastically unloaded

configuration. In such a formulation, the original 8-chain model is no longer useful,

as it would give a non-zero stress state for any anisotropic unloaded configuration.

We therefore proceed to investigate incorporating an anisotropic 8-chain model into

this new model formulation.
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Figure 6-6: Unit cell for the orthotropic model

6.2 Description of the 8-chain Anisotropic Model

The anisotropic constitutive model development follows the details of Bischoff, Ar-

ruda, and Grosh (2000). The unit cell is taken to be orthotropic, with dimensions a,

b, and c, as shown in figure 6-6. The material axes, a, b, and c are required to be

orthogonal, but may be rotated relative to a reference coordinate system, X 1, X2 ,

X3 . The vector description of each of the 8 chains is given by:

p(l)-=p(5)a+a b c
PG)= PG)= a+ -b+ -c

2 2 2
p(2)=_p(6)a ±b c

p(2 = p(6 = a + -b -- -C
2 2 2

p(3) =_P(7) a -b + Ca -b + c
2 2 2

p(4) _p(8)aa -b--c
2 2 2

And the length of each undeformed chain is:

P= va 2 +b 2 + c 2

2
(6.2)
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This undeformed chain length is related to the rms length of a chain, so P =vW,

and N is related to the unit cell dimensions by:

1
-VH=-Na 2 +b 2 + c2  (6.3)

2

Assuming affine deformation, the lengths, p), of the deformed chains are given by:

p = P(i)T- C - P(i) (6.4)

summation over i not assumed. C = FTF -=2E + I is the right Cauchy-Green strain

tensor, I is the identity tensor, and E is the Lagrangian strain field.

The two components of strain energy which contribute in the deformation of the

unit cell are a contribution due to entropy:

1 - (ip)-

Wentropy =wo + 2kON t [ (+In s(6.5)
i=1 . N sh 0(')

and a contribution due to repulsion:

Wrepulsion = 8kON/ lnAa2 'Ab Ac2  (6.6)
a2 + b2 + C2

where wo is a constant related to the nonzero entropy in the undeformed state, k is

Boltzmann's constant, 0 is absolute temperature, N is a chain parameter related to

crosslink density, /p = 2- [P/N], and O3) = -[pQ')/N], with _2(x) = coth x -

1/x. Also,Aa = aT-C -a, A 6 = bT-C -b, and Ae = vcT-C -c, which are the

stretches along the principal material axes.

Assuming a chain density of v and noting that there are eight chains per cell, the

strain energy per unit volume is:

W (x) = (wentropy + Wrepusi on)(6.7)

An additional term can be added to account for compressibility, but if we assume
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incompressibility, the final form of the strain energy function is:

W(x) w= 0 + '7 (Nt ['iji + In sP < > n A 2A)Ac (6.8)

From this strain energy function, one can calculate the second Piiola-Kirchhoff

stress tensor as T = &W/OE:

ukO 4 P Op ~ 8i)a 2 b2 C 2

tk =40 [±P - p (jTA2iak + bb A+cick (6.9)

The details of the differentiation are included in Appendix B. The Cauchy stress can

then be calculated as:

T=-F'TF (6.10)
J

where J = detF.

If we consider only triaxial states of deformation in which the material axes are

aligned with the coordinate system, the expression for the Cauchy stress becomes:

vk0a2 [-g2P 4]

= 2= = = 0 (6.11)

with A1, A2 , and A3 being the components of the deformation gradient:

A1  0 0

F= 0 A2  0 (6.12)

0 0 A3

Also, p here is defined as p = Va 2 A + b2A3+ c2 Ag.
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Figure 6-7: Kinematics involved in incorporating the anisotropic model

6.3 Incorporation of the Anisotropic Model in the

PETG Model

In order to incorporate the anisotropic model into the model for PETG, we need to

calculate the evolving natural state of the polymer. In other words, we need to find

the new unit material vectors a, b, and c and the new dimensions of the unit cell, a,

b, and c in order to compute the stress. Once these have been obtained, the stress

can be calculated from equation 6.11 for triaxial deformation or from equation 6.9

more generally. Note that the network deformation gradient, FB, is used to compute

C above and A,, A2, A3 would correspond to the diagonal components of F I in the

case of triaxial deformation.

To obtain the new natural state, we return to the kinematics associated with

the deformation (see figure 6-7). The deformation of resistance B is multiplicatively
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decomposed into a network and flow portion:

FB = F NF F(6.13)

The velocity gradient is

LB =FBFB 1  (6.14)

LB = FFN-1+ FNFF 1FN-1 = L4 + L (6.15)

B D+WB (6.16)

We choose to make the representation unique by setting the plastic spin to zero,

VVF = 0.

We can use the polar decomposition of FF to separate it into its stretch and

rotation components:

F = R UF (6.17)

and an eigenvalue decomposition of UF will yield the directions and magnitudes of

the principal flow stretches A1F, A2F, A3F:

3

(U)2= C= S F 0i(6.18)
i=1

where AiF is an eigenvalue of UF, termed a principal flow stretch, CZ=(F%)TFZ is

the Right Cauchy-Green strain tensor, and i is an eigenvector 1 of C§. The vectors

(a, b, and c) and lengths (a, b, and c) representing the orthotropic unit cell can be

obtained from the principal flow stretch values AlF, A2F, A3F and their corresponding

eigenvectors fit, n2, n3 as:

a = i1  (6.19)

b = n2 (6.20)

c = i 3 (6.21)
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and

a = aoAIF (6.22)

b = aoA2 F (6-23)

c = aoA 3 F (6.24)

where ao is the initial size of the isotropic unit cube prior to deformation, related to

the initial number of rigid links between entanglements, No, by:

ao = - 0 (6.25)

Recall from equation 6.3 another expression relating the number of rigid links between

entanglements to the size of the unit cell:

1
VIN=2 -a 2 +b 2 + c2  (6.26)

2

Substituting in from eqns. 6.22 to 6.24 we obtain

/ =ao A2F + A2-2Vii =3F (6.27)
2

which indicates that N will vary from No with deformation. This means that through

flow, the polymer chains essentially reptate or slip through their entanglements, caus-

ing there to be more rigid links between two neighboring entanglements, a result which

is rather intuitive. Note that conservation of mass requires that the product of N and

v remain constant, so that the evolution of N

N A' F N2F+/NFN IF§±§±2F 3F(6.28)

No 3

necessitates an evolution of v

v 3
0 2?+ F+ F(6.29)

VD 1 F + F+ AF
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Once the material directions a, b, and c have been calculated from the above

equations, they need to be rotated by R§ to bring the orthotropic cell into the

elastically unloaded configuration. Then the stress can then be calculated directly

from equation 6.9 or from the simplified form for triaxial deformation in equation 6.11.

This completes the modifications to the model framework to include the anisotropic

model.

6.4 Comparison with Experimental Data

Using this new approach, the following simulation results are obtained. Figures 6-8

through 6-17 show the results for uniaxial compression and figures 6-18 and 6-20 show

the results for plane strain compression. These figures illustrate that the model is able

to capture the trends of strain rate, strain state, and temperature dependence of the

initial modulus, flow stress, initial hardening modulus, and the dramatic hardening

at large strains for PETG.

Figures 6-21 through 6-27 show the comparison of simulation with experiment.

Error values for these curves are tabulated in Table 6.1 and are shown graphically

in figures 6-28 and 6-29. It can be seen that all experiments are very well approxi-

mated and are even slightly better approximated than in the previous model. This is

especially clear in uniaxial compression at higher strain rates (see figure 6-28).

6.5 A Comment on Shear Behavior

An interesting sidetrack relating to this anisotropic model arises if we look at the limit

of a = b = c = ao. Going through the math, it becomes clear that for triaxial defor-

mation along the material axes, the anisotropic model yields the same result as the

isotropic model. However, if there is any shear deformation involved, the anisotropic

model no longer reduces to the isotropic 8-chain model for a = b = c = ao. This

can be explained by noting that for the isotropic model, the model depends simply

on an effective chain stretch, and the symmetry of the model makes the result inde-
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Figure 6-8: Uniaxial compression simulation, Temperature = 80 C

pendent of the spatial orientation of the unit cube. In the anisotropic model, on the

other hand, the material directions are explicitly included in the constitutive equa-

tion, hence causing the results to depend on the choice of material orientation, even

in the isotropic limit. For cases of triaxial deformation and when the material axes of

the anisotropic cell coincide with the principal axes of deformation, the anisotropic

model gives the same result as the isotropic model. In shear deformations, this is not

the case. In order to use the model obtained in this chapter for arbitrary deforma-

tions, this issue of material-orientation dependence must be dealt with appropriately.

It is proposed that a way to address the issue is to take an average of the response

over several different material orientations. The implementation of such an averaging

approach is left to future work.
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Figure 6-9: Uniaxial compression simulation, Temperature = 90 C
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Figure 6-10: Uniaxial compression simulation, Temperature = 100 C
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Figure 6-14: Uniaxial compression simulation, 6 = -.05/s
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Figure 6-16: Uniaxial compression simulation, t = -.5/s
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Figure 6-20: Plane strain compression simulation, Temperature = 100 C
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Table 6.1: PETG Error values for uniaxial and plane strain compression simulations
using anisotropic model

Strain State Temperature Strain Rate y, full range L, up toe = 1.0
Uniaxial 800C -0.005/sec .0708 .0886
Uniaxial 80 C -0.05/sec .1749 .1724
Uniaxial 80 C -0.5/sec .0773 .1124
Uniaxial 90"C -0.005/sec .1060 .1482
Uniaxial 90 C -0.05/sec .0856 .1246
Uniaxial 90 C -0.5/sec .1557 .1912
Uniaxial 100 0C -0.005/sec .1037 .1642
Uniaxial 100' C -0.05/sec .1992 .2484
Uniaxial 100'C -0.5/sec .1846 .2686
Uniaxial 110 0C -0.005/sec .4431 .2376
Uniaxial 110C -0.05/sec .2726 .2919
Uniaxial 1100C -0.5/sec .3124 .3712
Plane Strain 80 C -0.005/sec .2430 .2325
Plane Strain 80' C -0.05/sec .1529 .1516
Plane Strain 80' C -0.5/sec .0456 .0490
Plane Strain 90' C -0.005/sec .1510 .1289
Plane Strain 90' C -0.05/sec .3451 .3389
Plane Strain 90' C -0.5/sec .1654 .1793
Plane Strain 100' C -0.005/sec .1656 .1256
Plane Strain 100 C -0.05/sec .1612 .1826
Plane Strain 100 C -0.5/sec .2312 .2626
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Chapter 7

Blow Molding Simulations

A primary motivation for developing the constitutive models presented in this thesis

was for the application to industrial processes. One prominent example is the process

of reheat stretch blow molding. In this chapter, we discuss the design challenges

associated with this process and present the results of finite element simulations

using the model for PETG from Chapter 4.

7.1 Introduction

The reheat stretch blow molding process is illustrated in figure 7-1. A preform is

first injection molded. Later, the preform is reheated to approximately 15-30 degrees

above the glass transition temperature. It is then stretched by an axial rod and a

pressure is applied inside the preform to inflate the bottle. As the preform makes

contact with the mold, it cools and solidifies. Once the bottle has cooled, it is ejected

from the mold.

7.2 Experimental Blow Molding Parameters

Several factors significantly affect the final bottle product. The aim is, of course,

to reduce costs by using the least amount of material and by blowing bottles as

quickly as possible. However, this drive to reduce cost is checked by several important
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fij
(a) (b) (c) (d) (e)

Figure 7-1: The reheat stretch blow molding process: (a) injection mold preform
(b) reheat preform above 0g (c) stretch preform with axial rod (d) apply pressure to
inflate preform (e) cool and eject from mold

product features. One of these is shelf life. Since many bottles will contain carbonated

beverages, it is desired that the bottles be highly impermeable to gasses, so that

carbonation loss is as slow as possible. A bottle which has a very thin wall may

save money by requiring less material, but if the wall is too thin, the beverage will

lose carbonation too quickly for a realistic shelf life. A second important feature is

the optical clarity of the bottle walls. Ideally, customers desire a clear, transparent

bottle. If the bottle is processed at an inappropriate temperature or speed, processes

referred to as pearling and hazing may occur, causing the bottles to become opaque.

Pearling indicates the bottle was blown at too cold a temperature, inducing chain

scission. Hazing, on the other hand, results from blowing the bottle at too high a

temperature, leading to larger crystallites and a hazy appearance to the bottle.

We can identify several key manufacturing parameters which need to be appro-

priately specified: (1) Preform and mold geometries must be designed in such a way

that the polymer reaches its natural draw ratio before contacting the mold. In such

a design, any neck caused by an imperfection in the preform will propagate along the

length of the preform before contact with the mold cools the material. This gives the

bottle a very uniform wall thickness. Other geometric design issues include prescrib-

ing proper taper angles on the preform and the bottle mold to ensure proper mold

release, both of the preform after it has been injection molded, and of the final bottle

from its mold. Proper design of the preform base is needed so that excess material is
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not wasted in an overly thick base. More complex design issues continually arise as

customers demand new products which are no longer simple axisymmetric geometries.

(2) Reheat time and furnace configuration are critical in achieving the correct

bottle temperature, temperature profile along the length, and temperature profile

through the bottle thickness. As mentioned above, blowing the bottle too hot or too

cold results in opacity in the bottle walls. Additionally, thicker sections in the pre-

forms generally require higher temperatures to blow properly. Due to a combination

of different heat transfer effects during the preform heating stage, the inner and outer

surfaces of the preform tend to be at different temperatures when blowing begins. If

properly controlled, this can work to the advantage of the designer. During inflation,

the inner surface experiences a larger strain than the outer surface. Thus, it is gen-

erally desirable to have the inner surface at a slightly higher temperature than the

outer surface. This slight temperature difference can be controlled by appropriately

specifying the reheat time.

(3) Stretch rod geometry and velocity (force) must be specified. The stretch

rod is generally driven by a hydraulic pressure, so that it applies an approximately

constant force to the bottom of the preform. One of its main purposes is to stretch

the material in the base of the preform prior to inflating the bottle, since directly

applying a pressure will generally not create sufficient stretching in the base of the

bottle. Another purpose is to center the preform in the mold as it is inflated. It

additionally creates a more complex stretch history for the bottle sidewalls than in

a simple inflation process, something which is important to understand in order to

correctly predict bottle blowing behavior and final bottle properties.

(4) The magnitude and duration of the pressure must be specified. Often, the

pressure is applied in two stages. First a lower (preblow) pressure is applied prior to

stretching with the axial rod, in order to prevent the preform from touching off on the

stretch rod. A larger pressure is then applied to inflate the bottle. This pressure is

generally specified as a constant value, but in reality the pressure felt by the preform

is determined by hydraulic relationships. First, when the pressure is applied, it rises

quite rapidly in a fairly linear ramp. As the bottle begins to inflate, the pressure
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subsequently drops due to the increase in volume. The pressure again rises according

to the air flow rate provided by the system.

Each of these design issues and challenges can be studied using computer simula-

tions, a sampling of which will be addressed in the next section.

7.3 Description of the Finite Element Model

In this section some simple finite element simulations are set up to try to understand

some of the variables which affect bottle blowing. The preform geometry which has

been studied is shown in figure 7-2. This geometry is represented in figure 7-3 by a

mesh consisting of quadratic axisymmetric elements (ABAQUS element type CAX8H)

constrained by a symmetry boundary condition at the bottom and by a constraint

in the 1- and 2- directions at the top. The upper boundary condition is, in fact,

rather difficult to prescribe without initiating numerical problems at this location.

As a result, two acceptable methods were found to achieve the desired constraint for

free blows (simulations without a mold): (1) a pseudo-rigid element with rotations

and contractions allowed at the top and (2) a contacting rigid element to provide

a smooth boundary condition for the nodes near the top. These are illustrated in

figures 7-4 and 7-5, respectively.

For boundary condition (1), the following constraint equations were applied to the

nodes along the top of the preform:

U(3)=0.0

U3 =0.0

2)
a1 1

U(2) 05 ()a2 2

(4) = (2)
t1  -a 1

(4) (2)
U2 _U-2

(5) (1)U1 -a 1
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Figure 7-2: Preform used for bottle simulations
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Figure 7-3: Finite element mesh for bottle simulations
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Figure 7-4: Boundary condition (1)

Figure 7-5: Boundary condition (2)
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(5)(1
U2  - U2 (7.1)

where u. denotes the displacement of node i in the j-direction. These constraints

essentially tie the nodes along the top of the preform to remain along a straight line,

allowing that line to both rotate and contract with deformation.

For boundary condition (2), the nodes along the top of the preform were con-

strained to have no displacement in the 2-direction and were held in place in the

1-direction by bringing the curved rigid surfaces into contact with the preform. The

rigid surfaces were prevented from translating and from rotating. Several different

friction and contact conditions were specified, in an effort to find the most stable

boundary condition to use.

7.4 Simulation Results and Discussion

A free blow simulation using boundary condition 2 is shown in figure 7-6, with the

time shown underneath each snapshot. In this simulation, the entire preform was at

a temperature of 100 C. The pressure was applied to the inner surface of the preform

along a linear ramp from 0 to 0.5 MPa over the course of 10 sec. It can be seen that

the preform did not sustain any appreciable deformation up to a pressure of about

0.293 MPa, corresponding to a time of 5.87 sec. Once this pressure was reached, the

deformation proceeded very rapidly. Deformation began in the thinnest section of the

preform (near the top) and then started to propagate down the length of the preform.

From this simulation, some interesting parameters can be monitored. A sampling

of these is given in the following figures. Figure 7-7 shows how the orientation pa-

rameter, amin, varies with time along the length of the bottle. The cutoff value of

acmin is 0.05 rad (2.9 '), so it appears that in this simulation the top portion of the

bottle has just reached the cutoff point. Figure 7-8 shows how the plastic shear rate

in resistance B (molecular relaxation) varies with time along the length of the bottle.

This parameter indicates where the material is actively deforming at that instant in

the process. Figure 7-9 shows how planar stretch ratio (PSR), a design parameter
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used in bottle production, varies with time along the length of the bottle. PSR is

defined as:

PSR =A, x\ 2  (7.2)

where A1 and A2 are the two largest principal stretches. The bottle simulated here was

designed for a PSR of 11, indicating the bulk of the preform should reach this value

before contacting the mold wall. It can be seen that the simulation falls short of this

point. This may be because the simulations were run using the material model for

PETG. In blowing an actual bottle, it is very difficult to blow a bottle made of PETG

without rupture of the bottle occuring. Additionally, figure 7-9 showed that the

plastic shear rate had decreased in the highly stretched region of the bottle, indicating

that in PET, crystallization might start to occur at this point in the deformation.

Crystallization would stabilize the deformation and could explain why PET will form,

but PETG will not. Figure 7-10 shows how the bottle wall thickness varies with time

along the length of the bottle. In an ideal bottle, the thickness should be fairly

uniform along the length of the bottle. Figure 7-11 shows how chain stretch evolves

during processing.

For comparison, a simulation was performed using a temperature profile along

the length of the bottle. The temperature profile is shown in figure 7-12 and the

deformation progression is shown in figure 7-13. It can be seen that the deformation

progresses through much more of the bottle using a temperature profile such as this.

Figure 7-14 shows how the orientation parameter, mi, varies with time along the

length of the bottle. Clearly, much more of the bottle wall has started to experience

strain hardening than in the previous simulation. Figure 7-15 shows how the plastic

shear rate varies with time along the length of the bottle and indicates that plastic

flow is moving from one section of the bottle to another. Figure 7-16 shows how PSR

varies with time along the length of the bottle. Again, the bottle, in spite of having

the correct overall shape, falls short of the design PSR by a factor of 2. Figure 7-17

shows how the bottle wall thickness varies with time along the length of the bottle. In

this simulation, a much more uniform wall thickness is obtained. Figure 7-18 shows
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how chain stretch evolves during blowing.

Additional simulations have been performed to incorporate the effects of using a

stretch rod and effects of blowing a bottle inside a mold. The stretch rod was sim-

ulated as a cylindrical rigid body with a spherical head of radius 4.5 mm. Blowing

inside a mold was simulated using a mold geometry supplied by Eastman Chemical.

Rather than simulating the complex thermal effects of cooling upon contact with

the mold, a no-slip boundary condition was specified for the mold-bottle interface.

Some results using the mold and rod are shown in figures 7-19 and 7-21, with their

corresponding pressure-time and stretch rod displacement-time curves shown in fig-

ures 7-20 and 7-22. For the simulation with the mold, the simulation was run with

a preform temperature of 90 C. This is a rather low temperature to blow a bottle,

the temperature partially accounting for the inability of the bottle to fill the mold

entirely. Adding a stretch rod would also help the bottle to fill the mold more fully.

In bottle forming processes, a stretch rod has several purposes: (1) the rod helps to

center the expanding preform inside the mold, inhibiting a lop-sided deformation in

which the bottle could touch off on one side early in the deformation; (2) the rod

extends the bottle to the length of the mold, helping to prevent short-shot bottles,

or bottles which did not form to the appropriate length; and (3) the rod alters the

stretch history of the bottle, causing the material in the sidewalls to be stretched first

in the longitudinal direction before being inflated biaxially. In the simulation with

the stretch rod, the same temperature profile was used as in the simulation shown

in figures 7-12 through 7-17. Even though the stretch rod did not deform the entire

length of the bottle, it is clear that the stretch rod should be able to cause a bottle

to attain a more elongated shape than without.

In summary, a few example blow molding simulations have been illustrated to

show the ability of the model to simulate complex industrial processes. A complete

parametric study to investigate the effect of variations in key parameters can be

conducted using the model to aid in design. It should be noted that the model

developed so far does not account for strain-induced crystallization. Future work to

add a simple crystallization criteria is needed to capture the behavior of PET under
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Figure 7-6: Deformed shape, T = 100 C

conditions where portions of the geometry experience periods of zero strain rate. In

fact, to correctly capture the behavior during stretch blow molding of PET, it is

likely such a criteria needs to be added. It is observed that during bottle formation,

one area will begin to deform first until it starts to strain harden, at this point the

deformation moves to another region of the bottle. If the strain rate falls below a

critical level when the deformation leaves a region which has been strained to a large

degree, strain-induced crystallization is likely to occur. Incorporating this in the

model by means of a stiffening mechanism, possibly anisotropic, should prove useful,

also for determining final bottle properties upon cooling. Another area for future

work is to address the need to accurately model the pressure history felt by the bottle

during the blow molding process. The pressure is not constant, but rather decreases

as the bottle experiences an increase in volume. Employing a user-defined volume

element and prescribing the pressure to respond appropriately to changes in volume

should improve the predictive ability of simulations.

299



time -

.. ......... .........

0.6 0,5 04 03 0.2 01 0

amin (Orientation Parameter)

Figure 7-7: Orientation parameter, T = 100 C
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Figure 7-8: Shear rate, T = 100 C
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Figure 7-9: Orientation parameter, T = 100 C
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Figure 7-10: Shear rate, T = 100 C
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Figure 7-11: Chain Stretch, T = 100 C
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Figure 7-12: Temperature profile for blow molding simulation
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Figure 7-13: Deformed shape, temperature profile
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Figure 7-14: Orientation parameter, temperature profile
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Figure 7-15: Shear rate, temperature profile
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Figure 7-16: Orientation parameter, temperature profile
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Figure 7-17: Shear rate, temperature profile
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Figure 7-18: Chain Stretch, temperature profile
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Figure 7-19: Finite element
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Figure 7-20: Pressure-time curve for the simulation shown in figure 7-19
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Figure 7-21: Finite element simulation, using an axial stretch rod, temperature profile
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Figure 7-22: Pressure-time curve and displacement-time curve for the simulation
shown in figure 7-21
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Chapter 8

Conclusions and Future Work

The aim of this work has been to better understand the mechanical behavior of PET

above the glass transition temperature. The approach followed was to compare the

behavior of PET with PETG, a random amorphous copolymer of PET. While PET

crystallizes very easily when deformed at these processing temperatures, PETG is

nearly impossible to crystallize. The goal was to be able to isolate the precise effects

of crystallization on the stress-strain behavior of PET by comparing the behavior

exhibited by the two polymers.

Several important conclusions can be drawn from this work as well as various areas

where future work can shed even greater insights. The data gathered and presented in

Chapter 2 is one of the first comprehensive collections of data on PETG. The general

trends of the stress-strain behavior are characteristic of polymers in the rubbery

regime. The stress-strain curves contain four general features: a relatively stiff initial

modulus, a rollover to flow at a rather low stress level on the order of 1-2 MPa, a

gradual strain hardening at moderate strain levels, and a dramatic upturn in stress at

very large strains. Each of these features depends strongly on temperature and strain

rate. With increasing temperature of deformation, the initial modulus decreases, the

flow stress decreases, the initial hardening modulus decreases, and the strain level at

which the dramatic hardening occurs shifts to larger strains. A decrease in strain rate

has the same effect on the stress-strain behavior as increasing the temperature. DMA

data is used to characterize the effects of strain rate and temperature on the elastic
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modulus through the glass transition region. In particular, the rate dependence of

the glass transition temperature is found to be an important factor, leading to a

sharp increase in modulus at moderately high strain rates. Due to the rates and

temperatures used in warm deformation processing of PET, careful modeling of rate

dependence near the glass transition is crucial.

State of strain dependence is also investigated by comparing the behavior in uni-

axial compression with plane strain compression expreiments. In plane strain com-

pression, the material exhibits a slightly stiffer initial modulus, increased flow stress

and increased strain hardening. Also, the dramatic upturn in stress occurs at lower

axial strain levels in plane strain compression.

In Chapter 3, the mechanical behavior of PET is investigated in parallel with that

of PETG. The same trends exist for PET almost word for word. The same level of

dramatic strain hardening exists in both materials, suggesting that a large amount

of the strain hardening which occurs in PET is due only to molecular orientation,

and not to strain-induced crystallization, as was believed previously. One area where

a difference is discernible between the two materials is in plane strain compression,

most notably at 90 C. At this temperature, the PET plane strain stress-strain curve

rises very abruptly at a strain level of approximately -1.25. This additional strain

hardening which is not as evident in PETG is likely due to either a crystallization

event, or to a meso-ordering of the PET chain segments which causes the material

response to stiffen dramatically.

In Chapter 4 a constitutive model was presented to capture the stress-strain be-

havior of PETG above the glass transition temperature. This model takes the re-

sistance of the polymer to deformation to consist of two separate resistances which

act in parallel: an intermolecular resistance to flow, and a resistance due to stretch-

ing and orientation of a molecular network. The intermolecular portion accounts for

the initial modulus and rollover to flow at small strains. The network resistance ac-

counts for strain hardening, with a viscous dashpot allowing for molecular relaxation

through reptation or chain slip to occur at higher temperatures and lower strain rates.

Through developing the model, it was found that the model can only capture the large
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strain hardening behavior of PETG by incorporating a criteria to halt the molecular

relaxation process once a particular level of stretch or orientation is achieved. This

halt to molecular relaxation had previously been observed in PET and was then at-

tributed to the onset of strain-induced crystallization. As this phenomenon is also

observed in PETG, it suggests that molecular relaxation can be halted solely by a

high degree of molecular order or alignment.

In trying to capture the state of strain dependence of PETG, it is found that

previously used models for molecular relaxation were inadequate. To correct for these

inadequacies, a new orientation parameter is developed. This orientation parameter

is found not only to capture the state of strain dependence of molecular relaxation

remarkably well, but also to be an excellent measure of the point at which molecular

relaxation ceases. Fitting the model to data for PETG yields the critical value of the

orientation parameter where molecular relaxation ceases to be 2.9 degrees (.05 rad).

This critical value is found to be independent of rate, temperature, and strain state,

further motivating the conclusion that this parameter is physically related to the

orientation of the molecular network and is in fact a key variable in the mechanism

of molecular relaxation. The orientation parameter developed here is qualitatively

related to other orientation factors used in polymer physics, such as the Hermans

orientation function. Quantitatively, there are some differences, as was noted in

section 4.5.2, as this model follows the trend of a pseudo-affine model. Future work

can further investigate the relation between the orientation parameter developed in

this work and other, more experimentally-based measures of orientation.

Parallels are also drawn between the newly proposed molecular relaxation model

and the original Doi-Edwards reptation model, an effort which forms the basis for the

start of a link between the often disconnected branches of polymer solid mechanics

and polymer fluid mechanics. Differences are identified between the Doi-Edwards

model and the proposed molecular relaxation model and it is suggested that the

discrepancies could be overcome by using newer reptation models, such as that of

Marrucci and Janniruberto (?) which incorporate effects of chain stretching on the

polymer viscosity. Future work is needed in this area.
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In comparing the constitutive model results with experimental results, an error

parameter has been defined to quantify the level of agreement between simulation

and experiment. This error parameter is easy to compute and can be an aid in

evaluating whether one model is better than another at capturing a particular set

of data. An additional use for this parameter is in understanding the range of use

for a particular model. If error values are plotted against temperature, strain rate,

etc. the designer can easily see where the model error exceeds a preset tolerance.

If it is determined that the model is not sufficiently precise in the operating range

for a particular process, the designer can then either look for a different model or

recompute the fitting parameters so that the error is lower in that strain rate and

temperature regime.

Chapter 5 extends the model to PET. It is found that only two of the material

constants need to be varied in order to capture the behavior of PET quite successfully

over the temperature range and strain rate regimes tested. The two material constants

are those related to the temperature dependence of molecular relaxation. One area

where the model is unable to fully capture the behavior of PET is at very large strains

in plane strain compression. This is to be expected since this is where the experimental

data of PET deviated from the behavior observed for PETG. It is suggested that the

discrepancy is only evident in plane strain compression since in this deformation mode,

the molecules all become oriented in a uniaxial manner, thus facilitating formation of

a meso-ordered structure.

Initial blow molding simulations are performed to look at how temperature affects

such parameters as wall thickness, orientation parameter, planar stretch ratio, chain

stretch, and plastic shear rate. It is anticipated that the model can be used to

investigate additional parameters and to perform a complete parametric study of the

blow molding process.

Future experimental work centering around comparing the behavior of PET and

PETG in biaxial extension should prove valuable. In the preliminary experiments

conducted here, it appears that there is more difference between the materials in

tension than in compression, but it is unclear whether this is due to a difference in
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the inherent pressure dependence of the stress-strain behavior of the two materials,

or if it is instead due to a different fracture toughness between the two materials,

causing PETG to fracture before dramatic hardening can be seen. Additional exper-

iments which take in-situ measurments of structural properties (such as crystallinity

and birefringence) would be helpful to better understand these differences. In-situ

experiments could also further validate the conclusions drawn here in which strain

hardening in these materials is related primarily to the development of molecular

orientation rather than to strain-induced crystallization.

Additionally, in compression experiments, final strains are limited by the experi-

mental setup to true strains of -2.0 in uniaxial compression and to -1.3 in plane strain

compression. These values correspond to biaxial planar stretch ratios (A1 x A2 ) of

7.39 and 3.67, respectively. In biaxial extension, on the other hand, dramatic strain

hardening does not begin to appear until the material reaches a planar stretch ratio

on the order of 9.0 and even higher stretch ratios are seen in processes. In stretch

blow molding of PET, for example, planar stretch ratios are on the order of 11.0.

Future work should investigate ways to obtain compression data to larger strains to

determine whether sharp, dramatic hardening as seen in plane strain compression can

also be achieved in uniaxial compression experiments.

Future modeling work can be done to address incorporation of strain induced crys-

tallization upon unloading of the material, or after a brief halt in deformation. This

will likely give improvements in blow molding simulations, as during these processes

flow may momentarily stop at various locations along the bottle when deformation

propagates to another region. Additionally, the incorporation of an anisotropic 8-

chain model in Chapter 6 can be extended to tie in with other work, such as in the

field of biological materials. Biological materials are particularly challenging to model

due to the evolution of their natural states (due to growth, for example). It is hoped

that the approach taken in Chapter 6, where the natural state of the polymer was

made to evolve and become anisotropic with deformation (thus influencing the final

state and mechanical properties of the material) could be extended to model more

complicated problems with evolving natural states.
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Appendix A

Mathematical details of the

averaging required for the

Doi-Edwards Model

Using the coordinate system shown in figure A-i we have:

ux = sin 0 cos #

UY = sin 0 sin #

Uz = cos0

and equation 4.59 becomes:

1 A2 cos 2 0- { sin 2 0 cos 2 q

I1-4. 4 Vcos2 0 ± [(sin 0 sinq$)2 + (sin 0cos 0) 2 ]

[7r s27r 1 0  AcsO sin2 0 cos 2 q0

- 11  7 rs A3 cos2 0±+ sin 2 0dqd

- sin6 33cos2O+ sin2 0 [j~3cos2o0

- sin 2 03cos 2 d
7r sin 0 1 27(A3 0)q$

A3 cos2 0 + sin2 0 cos 2

112 121
-[(sin2 0)0+-sin2 0 sin2]I dO

2 4 j$0=O
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Y
x9

Figure A-1: Coordinate system for polar angle conversion

- [W1 A' cos 2 0- I sin2 d9
12 sin Aco 2 sn 2

1 2 A3 Cos2 0 + sin 2

-1Ifxr2A3 cos2 0 - sin2 osn d

S0 A3cos2 0 + sin2 0 G
-I1/'T 2A3 cos2 0 - (1- cos2 0) sin OdO

41o Acos2 0 + (1- cos 2 0)

1 prcos2 0(2A3 + 1) - 14 o Q- 1sin edC (A1)4 " COS2 g(A3 - 1) + I

Using the following substitution

w = cos0

dw = -sin ed/

in = lwhen 0 = 0

w = -1when 0 =-r
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we obtain:

6ZZ - -=
S2(A3 + 1) - 1 du

-4 21 2(33_ 1) + I

1 1 u 2(2A' + 1) - I1d
4 1 u2(3 - 1) + I

1 1 u2 (2A 3 + 1) 1 1

du- - 2A3 +1du
4 -1 u2 (33_1) + 1 4 -1 u23 1

(A.2)

The solution to this problem will fall into three categories: (1) A3 - 1 < 0, (2)

A3 - 1 = 0, and (3) A3 _ 1 > 0, each of which will be solved separately

Case 1: A3 - 1 < 0

It is helpful to recall from calculus:

I du = tanh-1
1-U 2 u+C, Jul <1

Now the second term of equation A.2 is,

21+ dw=J 1+w (3-1 I dw
I -w 2(1- A 3)

tanh-1(w /1 - A3)

1 -A 3

For the first term,

f w2(2A3 + 1) w =
1 + w2(A3 -1) J 2 (2A 3 +1)1 - w 2(1 - A3)

2A3 +1 [f(1 - A2
(1 - A3) 1I _W 2(1 - 3)

w/ 1-A 3  = tanhq$

v/1 - A3dw = sech 2 5 do

1 - w 2 (A 3 ) = 1 - tanh 2 q = sech 2 0
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and equation A.5 becomes

J w 2 (2A3 + 1)
1 + w2 (A3 - 1)d

2A3  +1 tanh20d
= (I _ A3)v/1 _-- 3 sech 2,sech20 do

2A 3 + I1 ah20d
( 2 -A 3) /I_ tan'f 1 A

2A 3 + I

23 +/I _ 3 tanh-(wv/1 -- A3)
(1- A3)-- A3 A

-wI- A3)

Combining,

1 2A 3 ± 1

= 4 K1A3 _ i 3 1 -AA 3 )- i3)

tanh-(w v1 -- A3 ) 1
v/1 -A 3

2A3 + I (tanh-' v/1 -A3 _vT/1-_A3)422A3 +1
2 M(1 -A3),/ lA 3 (tn - 3  - 3

tanh-v 1 - A3 -
v1 -- A3J

1 (2A3 + 1)-(1 - A3) tah 1A 3

2 (1 - A3) 1-A 3  1-A 3

3A3  tanh- 1 V1 - A3 __ 2

2(1-A 3 )/ 1A 3 1-A 3

3 A3

2 1 - A3

3 A 3

21 - A3

3 A 3

21 - A3

A 3
tanh- 1(v 1 - A')

( tanVh-'(V1- A3 ) -

tanh-(V1- A3)

V/1 -N 3 -

1 +
A_3

A 3 + I
2

1A3

1
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Case 2: A3 -1= 0

The two terms in equation A.2 become simply

2(A3 1)d+ =Jdw:= w/ f2(3- 1) + 1
W 2 (2A3 + 1)

W2(A3 -1) + 1) J3w dw=W3

Evaluating the limits of the integral, we obtain

13

4QZ zz QX
1 1 1 1

QZZ - QXX= 0

Case 3: A3 - 1 > 0

Recall from calculus:

f d1±ua 2 '= tan-1 a + C
1+U3

The second term of equation A.2 is,

I ldw= tan-'(wv/A3 -1)

w 2 (A3 -1) +1 /A 3 - 1

For the first term,

[ w2 (2A3 + 1) dw
w2(A3 -1) + 1

wv A3 -1

v/A 3 - ldw

1+W 2 (A3 -1)

2A 3 +1 w2 (A3 _1)
A3 - I w2(A3 - 1) + ldW

= tan0 

= sec2 q0d#

= 1+tan2 $= sec 2 o
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(A.ll)
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f w2 (2A 3 +1) dr
W2 (A3- 1) + 1

4ZZ - QXX

2A 3 +i tan 2$ 2 qOdq
I (A3 -i )/A A3 -lI se 2 se0

2A3 + 1 ft2d

(A3 - 1)/A 3 - 1I
2A 3 + 1

(A3 -1)/37-_W (tanV-3)

2-A3-1(W A3 -

- tar-'(wv A3 -i)) (A.14)

1 2A'+1(
= (3-I) A3 (WN/'A- - -tan-' (wV/A3 _.1)

tan-'(wVA3 _-1)]1

VA 3 -1I

1 2A 3 +1

2 (3 _ 1 V/13 _

( 1
3 A 3

2 A3
- 1

(v A-3- - -tan-' v'A3 _ 1)

tan-1 VA 3_-

%/A3 -1

2 (2A 3 +1) + (A3 _ 1) 1
2 (A3 -1) V/-33 _I -tan- \/-A3-- 1

13A 3
tan- vA3 - 1

2 (A3 -1) /A3 -I

tan-'(VA3 - IA) 3 + }
/l3 j + A3 _-

N -J6

tan-(v/A -)

tan-A(v/A3-_-1))

- A-3 - 1I

A3 -1

A3
A3 +

+ A3 -1

1

The expressions which have been derived for Q,, - Q,; in equations A.7, A.10,

and A.15 are the same as those found in reference (Doi and Edwards 1978).
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Appendix B

Derivative of the Strain-Energy

Function

We start with the strain energy function for the anisotropic 8-chain model (refer to

Eqn. 6.8),

W(x) = Wo +'(Nt [
4 2_ LN ' P

+In g
sinh #R

- =3 InP A a A c

Note that the deformed length of chain i, p), is defined as:

p = i)P= -p(QT-C - P (

which can be expressed in indicial notation as

p(o = PZ)CimP4V

- Pi([2Elm +61m]P42 (

with summation over I and m implied and 61m representing the Kronecker delta:

= 

(: 

= =M

E 0 :l#M(

B.2)

3.3)

B.4)
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Differentiating Eqn. B.3 with respect to Ejk yields:

&p(ik

OEg

p(i)p(i) a

2 P/ E +m ](2Eim + 61m)

2 p(i)P) Pm( x 26 1j6 mk
p(i)pi
j k

p(i)
(B.5)

Also, the stretch in the a-direction, Aa, is defined as:

Aa= %/aT - C - a (B.6)

and by the same process as above, we obtain:

OAa _ ajak
QEyk- Aa

(B.7)

To evaluate OW/DEjk, we take one term at a time. As WO is a constant, the derivative

of the first term in Eqn. B.1 is 0. From the second term, we obtain by the product

rule:

OE3k (Pj)N~

1 . & p)
N [9 Ek &EjkJ

p(i) O )
N OEgk

From the third term, using the chain rule:

( i)
sinh 0('))

sinh # OW

sinh /3kW
= /3k)

(9Esk \sinh # 0 )

sinh ( o i - /(OWcosh )

h p p OEJk
sinh2 0(t)

= p3-- coth/0(]
(iE
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N p(i)

a
DEjk
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p W0

a Qpi) p(i)

&Ek N

Combining Eqns. B.8 and B.9:

& p(i) i
&Eg , N P

From the last term in Eqn. B1:

PEJ1, i[A "424]

- In )
sinh

j=I
N p(i)

P1

v/W -Aa2 A 2 C

x a 2A a2_1 &Aa A62 A C2

L- a (9Eg b c

+ b2Ab2 1 &bAa2Ac2
b t9Ej a c

+ C2 C2_1 &acA 2A2
c 0 aA

/p a2 Oha 2a Ab c2 &Ao c
vm[7mk+ tE]-±A EAa Ejk Ab (9Egg e aEj

ap [aa2 + 2

aCian+qbobn1+-aCBC.

Combining Equations B.10 and B.11 yields

OW _ukO

&Ejk 4
[4 p(i)p(i)
i=1 Pi)

P

which is the same as Equation 6.9.
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Appendix C

Time- integration Procedure for the

Constitutive Model

This appendix summarizes the time-integration procedure which is used to incorpo-

rate the constitutive model into a finite element analysis.

(1) From the current time step the following quantities are known: F(t), F(t), FF(t),

FP(t) , FF(t), j'A(t), and jf(t).

(2) The following are given by the finite element routine for the new time step:

F(r),At, and the quantity (t + At) will be denoted by 7r.

(3) The following quantities need to be calculated for the new time step: T(r), TA(r),

TB(r), F (T), F(r), F'(r), F1(T), il(r), and '(r).

Resistance A

(1) The plastic deformation gradient is updated explicitly:

FP(7) = FP7(t) + F (t)At (C.1)

(2) Since F(r) = FA(T) = FB(r) the elastic deformation gradient is computed as:

Fer) = F()(F(r)) (C.2)
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(3) Using the polar decomposition,

V' (T)= F a(T)(R (T))-1 (C.3)

(4) The Cauchy stress is then:

1
TA(r)-= 2e[ln Ve (T)] (C.4)

JA(r)

with

JA(r) = det Fe(T) (C.5)

The material constants in the fourth-order tensor of elastic constants (2 ) are de-

termined from equations 4.26 and 4.28, using -4(t) to calculate 0 .

(5) The shear stress is:

-1 - /2

TA(T) = -T'()(T)f (C.6)

1
NA(T) = TA(T) (C.7)

V 2TAA(T)

where T'(T) is the deviatoric portion of TA(T).

(6) From the flow rule:

() = oA exp [AG(1k G](C.8)

(7) If the plastic shear rate has changed too much (i.e. if the ratio f (T)/I(t) differs

greatly from 1.0), then the increment is repeated with a smaller time step.

(8) Provided the change in j'A is not too great, the rate of stretching is calculated as

b )= f(T r)NA(r) (C.9)

with

LA = YeF1- + F FF- 1 = L +1f4 (C.10)

326



LP =DP + WP

and prescribing WP =0, we obtain Fj(r):

FI(T) = (F())-DP(T)FA (T)

Resistance B

(1) The plastic deformation gradient is updated explicitly:

F F(T) = FF(t) + F F (t) At

(2) The elastic deformation gradient is then computed as:

FQN(T) = F(T)(FF(T))--

(3) The following quantities are needed to calculate the stress:

JB(r) = det F N(T)

NT = (B W 1 / 3 FAN
BN T

BN(T) = F N N /2

AN(u)ed =sin 1 nm de:
3

(4) Then the stress is calculated using the 8-chain model:

TB(T)=1 vk6 vN_
JB(T) 3 -AN( i

(5) The shear stress is:

[AN(T 1 [flN() - -(AN Qr))21]

- N2

TB(T)T B

NB(T) =
1 %w
/ ( T' )V/2B (Tr
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(C.12)

(C.13)

(C.14)

(C -1)

(C.-16)

(C.17)

(C.-18)

(C.19)

(0-20)

(C.21)



where T'B(T) is the deviatoric portion of TB(T).

(6) The different constitutive expressions employed for the plastic shear rate are:

F1
ti(TC) = C(2F)I) T.(T) (C.22)

7) C[QAF(T) - 1B(7)] (C.23)
1 3

F(T) = C § -TB(7)](C.24)

(ANC -1) AFT -)

/ i nC(T) -1 x r n/n

(Tr) = h (ac -1 H m () TB (C.25)
Bacac vkO

In equation C.24, the strain-rate dependence of \NC(T) is calculated using tF(t) in

equation 4.37. Also,
1

AF(r tr{F(r)(FF(r)) T }]1 /2  (C.26)
3 B B

and amin is calculated as follows

BB(T) = FB r)(FB(r))T  (C.27)
3

BB(7) = Ai(r)2 fi(7)9nfii(r) (C.28)
i=1

Amin(T) = min(Ai(r)) (C.29)

7r Amin(T)
a1in((T) = - - COS_ )(C.30)

2 (7)2 + A2 (T)2 + A3()2

(7) If the plastic shear rate has changed too much (i.e. if the ratio 4(r)/j(t) differs

greatly from 1.0), then the increment is repeated with a smaller time step.

(8) Provided the change in '4 is not too great, the rate of stretching is calculated as

Dj(r) = F(-r)NB (r) (C.31)

Prescribing W' = 0, we obtain as in Resistance A:

F(T) = (F N () -1 $ (r)F (-r) (C.32)
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(9) The total stress is the sum of the stress in the two resistances:

T(-r) = TA(T) + TB(T) (C.33)

Anisotropic Model Changes

Using the anisotropic model, the time-integration procedure is unchanged for Resis-

tance A. The procedure for Resistance B changes as follows, with changes appearing

in steps (2a), (3), (4), and (6):

(1) The plastic deformation gradient is updated explicitly:

Fi(T) = FF(t) + F(t)At (C.34)

(2) The elastic deformation gradient is then computed as:

F (r) = F(T)(F'(T))- 1  (C.35)

(2a) To calculate the parameters for the anisotropic model, we need

F(T) = R(T)UF() (C.36)

CF() = (FF(r))TFF(T) (C.37)
3

CBQr) = (AiF(T)n 2 (T) 0 fl (r) (C.38)

a(r) = n(r) (C.39)

b(T) = fi2(T) (C.40)

C(T)= fi 3 (T) (C.41)

a(T) = aoRF(r)AlF(7) (C.42)

b(r) = aoR(r)A2 F(7) (C.43)

c(r) = aoRF(r)3F(T) (C.44)

N(r) _ AF (r)2 + A2F(T) 2 ±+A 3 F(T)r2 (

No

vur)

3
3

AlF(T) 2 + A2F(7) 2 + A3F(r)2
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Rotating a(T), b(T), and c(r) by R"7(T) brings the orthotropic unit cell into the

elastically unloaded configuration

(3) The following additional quantities are needed to calculate the stress:

JB(T) =det F' (r) (C.47)

C(r) = (FN(-))TF (T) (C.48)

(4) The stress is calculated using the anisotropic 8-chain model:

v -k 4 p i p(i) m ( 2 c l
jk= k- P - ajak + jbbk + C'CkI (C.49)

4P[ iN(w) \Aa b6

TI(r F N (7ri'(F ((r))T (C .50)
TB () =JB (F)B

where the values of P), p(), f)f, a, a-, AS , etc. are calculated using the appropriate

expressions in Chapter 6 and using values at the new time step for all quantities which

change in time.

(5) The shear stress is:

1 1/2

TB (T)- TB B-T'(T) (C .51)

1
NB(T) =-T' () (C.52)

where T'B(r) is the deviatoric portion of TB (T)

(6) The constitutive expression for the plastic shear rate is:

/ FOmin (-) - cmi (T)7B (T) 1/n

'5(7-) = h 1 c0 k6 (C.53)

and acmin is calculated as follows

BB(T) = FB r)(FB r))T  (C.54)
3

Bp(r) = ZA(T) 2 fii(T)ofin(T) (C.55)
i=1

330

I I



Amin(T) = min(Ai(r)) (C.56)

a 7r Amin(T)
mn(T) = - - m-in (C.57)

2 1kAT 2 )2+±A (T) 2

(7) If the plastic shear rate has changed too much (i.e. if the ratio Bfr(r)/ j(t) differs

greatly from 1.0), then the increment is repeated with a smaller time step.

(8) Provided the change in '4 is not too great, the rate of stretching is calculated as

D (r) = tf(T)NB(7) (C.58)

Prescribing WF = 0, we obtain as in Resistance A:

Nf(T) = (F'I())-bF ()FB(T) (C.59)

(9) The total stress is the sum of the stress in the two resistances:

T(r) = TA(r) + TB(7) (C.60)
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