10 research outputs found

    A coupled microscopy approach to assess the nano-landscape of weathering

    Get PDF
    Mineral weathering is a balanced interplay among physical, chemical, and biological processes. Fundamental knowledge gaps exist in characterizing the biogeochemical mechanisms that transform microbe-mineral interfaces at submicron scales, particularly in complex field systems. Our objective was to develop methods targeting the nanoscale by using high-resolution microscopy to assess biological and geochemical drivers of weathering in natural settings. Basalt, granite, and quartz (53-250 mu m) were deployed in surface soils (10 cm) of three ecosystems (semiarid, subhumid, humid) for one year. We successfully developed a reference grid method to analyze individual grains using: (1) helium ion microscopy to capture micron to sub-nanometer imagery of mineral-organic interactions; and (2) scanning electron microscopy to quantify elemental distribution on the same surfaces via element mapping and point analyses. We detected locations of biomechanical weathering, secondary mineral precipitation, biofilm formation, and grain coatings across the three contrasting climates. To our knowledge, this is the first time these coupled microscopy techniques were applied in the earth and ecosystem sciences to assess microbe-mineral interfaces and in situ biological contributors to incipient weathering.Oregon State University faculty startup fund; Office of Biological and Environmental Research; NSF [EAR-GEO-1331846, EAR-0724958, IOS-1354219]; [EAR-1023215]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Soil pore network response to freeze-thaw cycles in permafrost aggregates

    No full text
    Climate change in Arctic landscapes may increase freeze–thaw frequency within the active layer as well as newly thawed permafrost. Freeze-thaw is a highly disruptive process that can deform soil pores and alter the architecture of the soil pore network with varied impacts to water transport and retention, redox conditions, and microbial activity. Our objective was to investigate how freeze–thaw cycles impacted the pore network of newly thawed permafrost aggregates to improve understanding of what type of transformations can be expected from warming Arctic landscapes. We measured the impact of freeze–thaw on pore morphology, pore throat diameter distribution, and pore connectivity with X-ray computed tomography (XCT) using six permafrost aggregates with sizes of 2.5 cm3 from a mineral soil horizon (Bw; 28–50 cm depths) in Toolik, Alaska. Freeze-thaw cycles were performed using a laboratory incubation consisting of five freeze–thaw cycles (−10 °C to 20 °C) over five weeks. Our findings indicated decreasing spatial connectivity of the pore network across all aggregates with higher frequencies of singly connected pores following freeze–thaw. Water-filled pores that were connected to the pore network decreased in volume while the overall connected pore volumetric fraction was not affected. Shifts in the pore throat diameter distribution were mostly observed in pore throats ranges of 100 µm or less with no corresponding changes to the pore shape factor of pore throats. Responses of the pore network to freeze–thaw varied by aggregate, suggesting that initial pore morphology may play a role in driving freeze–thaw response. Our research suggests that freeze–thaw alters the microenvironment of permafrost aggregates during the incipient stage of deformation following permafrost thaw, impacting soil properties and function in Arctic landscapes undergoing transition

    Coevolution of Nonlinear trends in Vegetation, Soils, and Topography with Elevation and Slope Aspect: A Case Study in the Sky Islands of Southern Arizona

    Get PDF
    Feedbacks among vegetation dynamics, pedogenesis, and topographic development affect the “critical zone”—the living filter for Earth’s hydrologic, biogeochemical, and rock/sediment cycles. Assessing the importance of such feedbacks, which may be particularly pronounced in water-limited systems, remains a fundamental interdisciplinary challenge. The sky islands of southern Arizona offer an unusually well-defined natural experiment involving such feedbacks because mean annual precipitation varies by a factor of five over distances of approximately 10 km in areas of similar rock type (granite) and tectonic history. Here we compile high-resolution, spatially distributed data for Effective Energy and Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among vegetation-soil-topography variables, which vary nonlinearly with elevation, such that warm, dry, low-elevation portions of these ranges are characterized by relatively low above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high drainage densities; conversely, cooler, wetter, higher elevations have systematically higher biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution model that couples pedogenesis and topographic development over geologic time scales, with rates explicitly dependent on vegetation density. The model self-organizes into states similar to those observed in SCM and PM. Our results highlight the potential importance of eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems

    Critical Zone Services: Expanding Context, Constraints, and Currency beyond Ecosystem Services

    Get PDF
    Processes within the critical zone—spanning groundwater to the top of the vegetation canopy—have important societal relevance and operate over broad spatial and temporal scales that often are not included in existing frameworks for ecosystem services evaluation. Here we expand the scope of ecosystem services by specifying how critical zone processes extend context both spatially and temporally, determine constraints that limit provision of services, and offer a potentially powerful currency for evaluation. Context: A critical zone perspective extends the context of ecosystem services by expressly addressing how the physical structure of the terrestrial Earth surface (e.g., parent material, topography, and orography) provides a broader spatial and temporal template determining the coevolution of physical and biological systems that result in societal beneits. Constraints: The rates at which many ecosystem services are provided are fundamentally constrained by rate-limited critical zone processes, a phenomenon that we describe as a conceptual “supply chain” that accounts for rate-limiting soil formation, hydrologic partitioning, and streamlow generation. Currency: One of the major challenges in assessing ecosystem services is the evaluation of their importance by linking ecological processes to societal beneits through market and nonmarket valuation. We propose that critical zone processes be integrated into an evaluation currency, useful for valuation, by quantifying the energy lux available to do thermodynamic work on the critical zone. In short, characterization of critical zone processes expands the scope of ecosystem services by providing context, constraints, and currency that enable more effective management needed to respond to impacts of changing climate and disturbances
    corecore