16 research outputs found

    Transcription of Leishmania major U2 small nuclear RNA gene is directed by extragenic sequences located within a tRNA-like and a tRNA-Ala gene

    Get PDF
    Sequence comparisons of U2 snRNA genes and flanking regions from T. cruzi (CL Brener Non-Esmeraldo-like). Sequences from the genes located on chromosomes 23, 37 and 6 are shown. The U2 snRNA gene from chromosome 23 is presented in blue font. The position of boxes A and B is indicated. Sequence numbers are relative to the TSS (+1) from the U2 snRNA. (PDF 1404 kb

    Gene Expression in Trypanosomatid Parasites

    Get PDF
    The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa

    Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protozoan pathogens <it>Leishmania major</it>, <it>Trypanosoma brucei </it>and <it>Trypanosoma cruzi </it>(the Tritryps) are parasites that produce devastating human diseases. These organisms show very unusual mechanisms of gene expression, such as polycistronic transcription. We are interested in the study of tRNA genes, which are transcribed by RNA polymerase III (Pol III). To analyze the sequences and genomic organization of tRNA genes and other Pol III-transcribed genes, we have performed an <it>in silico </it>analysis of the Tritryps genome sequences.</p> <p>Results</p> <p>Our analysis indicated the presence of 83, 66 and 120 genes in <it>L. major, T. brucei </it>and <it>T. cruzi</it>, respectively. These numbers include several previously unannotated selenocysteine (Sec) tRNA genes. Most tRNA genes are organized into clusters of 2 to 10 genes that may contain other Pol III-transcribed genes. The distribution of genes in the <it>L. major </it>genome does not seem to be totally random, like in most organisms. While the majority of the tRNA clusters do not show synteny (conservation of gene order) between the Tritryps, a cluster of 13 Pol III genes that is highly syntenic was identified. We have determined consensus sequences for the putative promoter regions (Boxes A and B) of the Tritryps tRNA genes, and specific changes were found in tRNA-Sec genes. Analysis of transcription termination signals of the tRNAs (clusters of Ts) showed differences between <it>T. cruzi </it>and the other two species. We have also identified several tRNA isodecoder genes (having the same anticodon, but different sequences elsewhere in the tRNA body) in the Tritryps.</p> <p>Conclusion</p> <p>A low number of tRNA genes is present in Tritryps. The overall weak synteny that they show indicates a reduced importance of genome location of Pol III genes compared to protein-coding genes. The fact that some of the differences between isodecoder genes occur in the internal promoter elements suggests that differential control of the expression of some isoacceptor tRNA genes in Tritryps is possible. The special characteristics found in Boxes A and B from tRNA-Sec genes from Tritryps indicate that the mechanisms that regulate their transcription might be different from those of other tRNA genes.</p

    Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility.

    No full text
    The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility

    TFIIIB Subunit Bdp1 Participates in RNA Polymerase III Transcription in the Protozoan Parasite Leishmania major

    No full text
    Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major

    Flagellum beating.

    No full text
    <p>a) recorded image of an epimastigote showing the points that identify the centroid of the parasite body (<math><msub><mi>w</mi><mo>→</mo><mi>c</mi></msub></math>), the base of the flagellum (<math><msub><mi>w</mi><mo>→</mo><mi>i</mi></msub></math>), and its tip (<math><msub><mi>w</mi><mo>→</mo><mi>f</mi></msub></math>), all of which are used to compute the angle <i>ϕ</i>. b) Time evolution of angle <i>ϕ</i> in a typical trajectory. c) Power spectrum of the <i>ϕ</i> vs. <i>t</i> plot in b).</p

    Longitudinal and transverse velocity components for the genetically-modified strain.

    No full text
    <p>a) Experimentally-determined probability density functions (dots) and best fitting distributions (solid lines) for the velocity component transverse to the previous step, during tumbling and persistent motion. b) Experimentally-determined probability density functions (dots) and best fitting distributions (solid lines) for the velocity component longitudinal to the previous step, during tumbling and persistent motion.</p
    corecore