69 research outputs found

    Detectable HIV-1 in semen in individuals with very low blood viral loads

    Get PDF
    Abstract Background Several reports indicate that a portion (5–10%) of men living with HIV-1 intermittently shed HIV-1 RNA into seminal plasma while on long term effective antiretroviral therapy (ART). This is highly suggestive of an HIV-1 reservoir in the male genital tract. However, the status of this reservoir in men living with HIV-1 who are not under treatment is underexplored and has implications for understanding the origins and evolution of the reservoir. Finding Forty-three HIV-1 positive, antiretroviral therapy naïve study participants attending a men’s health clinic were studied. Semen viral loads and blood viral loads were generally correlated, with semen viral loads generally detected in individuals with blood viral loads > 10,000 cp/ml. However, we found 1 individual with undetectable viral loads (<20cp/ml) and 2 individuals with very low blood viral load (97 and 333cp/ml), but with detectable HIV-1 in semen (485–1157 copies/semen sample). Blood viral loads in the first individual were undetectable when tested three times over the prior 5 years. Conclusions Semen HIV-1 viral loads are usually related to blood viral loads, as we confirm. Nonetheless, this was not true in a substantial minority of individuals suggesting unexpectedly high levels of replication in the male genital tract in a few individuals, despite otherwise effective immune control. This may reflect establishment of a local reservoir of HIV-1 populations

    The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits <i>Porphyromonas gingivalis</i>-induced expression of interleukin-8 by oral keratinocytes

    Get PDF
    Objective: The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes.&lt;p&gt;&lt;/p&gt; Materials and methods: Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to &lt;i&gt;Porphyromonas gingivalis&lt;/i&gt; in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to &lt;i&gt;P. gingivalis&lt;/i&gt; lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-blacell reporter assay.&lt;p&gt;&lt;/p&gt; Results: Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited &lt;i&gt;P. Gingivalis&lt;/i&gt;-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to &lt;i&gt;P. Gingivalis&lt;/i&gt; lipopolysaccharide.&lt;p&gt;&lt;/p&gt; Conclusion: These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.&lt;p&gt;&lt;/p&gt

    Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment

    Get PDF
    Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer’s health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples—such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring

    Clinical Deterioration during Antitubercular Treatment at a District Hospital in South Africa: The Importance of Drug Resistance and AIDS Defining Illnesses

    Get PDF
    Background: Clinical deterioration on drug therapy for tuberculosis is a common cause of hospital admission in Africa. Potential causes for clinical deterioration in settings of high HIV-1 prevalence include drug resistant Mycobacterium tuberculosis (M.tb), co-morbid illnesses, poor adherence to therapy, tuberculosis associated-immune reconstitution inflammatory syndrome (TB-IRIS) and subtherapeutic antitubercular drug levels. It is important to derive a rapid diagnostic work-up to determine the cause of clinical deterioration as well as specific management to prevent further clinical deterioration and death. We undertook this study among tuberculosis (TB) patients referred to an adult district level hospital situated in a high HIV-1 prevalence setting to determine the frequency, reasons and outcome for such clinical deterioration. Method: A prospective observational study conducted during the first quarter of 2007. We defined clinical deterioration as clinical worsening or failure to stabilise after 14 or more days of antitubercular treatment, resulting in hospital referral. We collected data on tuberculosis diagnosis and treatment, HIV-1 status and antiretroviral treatment, and investigated reasons for clinical deterioration as well as outcome. Results: During this period, 352 TB patients met inclusion criteria; 296 were admitted to hospital accounting for 17% of total medical admissions (n = 1755). Eighty three percent of TB patients (291/352) were known to be HIV-1 co-infected with a median CD4 count of 89cells/mm3 (IQR 38-157). Mortality among TB patients admitted to hospital was 16% (n = 48). The median duration of hospital admission was 9.5 days (IQR 4-18), longer than routine in this setting (4 days). Among patients in whom HIV-1 status was known (n = 324), 72% of TB patients (n = 232) had an additional illness to tuberculosis; new AIDS defining illnesses (n = 80) were the most frequent additional illnesses (n = 208) in HIV-1 co-infected patients (n = 291). Rifampin-resistant M.tb (n = 41), TB-IRIS (n = 51) and drug resistant bacterial infections (n = 12) were found in 12%, 14% and 3.4% of the 352 cases, respectively. Interpretation: In our setting, new AIDS defining illnesses, drug resistant M.tb and other drug resistant bacteria are important reasons for clinical deterioration in HIV-1 co-infected patients receiving antitubercular treatment. HIV-1 coinfected patients may be at increased risk of acquiring nosocomial drug resistant pathogens because profound immune suppression results in co-morbid illnesses that require prolonged inpatient admissions. Routine infection control is essential and needs to be strengthened in our setting. Copyright: © 2009 Pepper et al

    Early severe morbidity and resource utilization in South African adults on antiretroviral therapy

    Get PDF
    BACKGROUND:High rates of mortality and morbidity have been described in sub-Saharan African patients within the first few months of starting highly active antiretroviral therapy (HAART). There is limited data on the causes of early morbidity on HAART and the associated resource utilization. METHODS: A cross-sectional study was conducted of medical admissions at a secondary-level hospital in Cape Town, South Africa. Patients on HAART were identified from a register and HIV-infected patients not on HAART were matched by gender, month of admission, and age group to correspond with the first admission of each case. Primary reasons for admission were determined by chart review. Direct health care costs were determined from the provider's perspective. RESULTS: There were 53 in the HAART group with 70 admissions and 53 in the no-HAART group with 60 admissions. The median duration of HAART was 1 month (interquartile range 1-3 months). Median baseline CD4 count in the HAART group was 57 x 106 cells/L (IQR 15-115). The primary reasons for admission in the HAART group were more likely to be due to adverse drug reactions and less likely to be due to AIDS events than the no-HAART group (34% versus 7%; p < 0.001 and 39% versus 63%; p = 0.005 respectively). Immune reconstitution inflammatory syndrome was the primary reason for admission in 10% of the HAART group. Lengths of hospital stay per admission and inpatient survival were not significantly different between the two groups. Five of the 15 deaths in the HAART group were due to IRIS or adverse drug reactions. Median costs per admission of diagnostic and therapeutic services (laboratory investigations, radiology, intravenous fluids and blood, and non-ART medications) were higher in the HAART group compared with the no-HAART group (US190versusUS190 versus US111; p = 0.001), but the more expensive non-curative costs (overhead, capital, and clinical staff) were not significantly different (US1199versusUS1199 versus US1128; p = 0.525). CONCLUSIONS: Causes of early morbidity are different and more complex in HIV-infected patients on HAART. This results in greater resource utilization of diagnostic and therapeutic services

    Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal

    Get PDF
    Multi-analyte binding assays for rapid screening of food contaminants require mass spectrometric identification of compound(s) in suspect samples. An optimal combination is obtained when the same bioreagents are used in both methods; moreover, miniaturisation is important because of the high costs of bioreagents. A concept is demonstrated using superparamagnetic microbeads coated with monoclonal antibodies (Mabs) in a novel direct inhibition flow cytometric immunoassay (FCIA) plus immunoaffinity isolation prior to identification by nano-liquid chromatography–quadrupole time-of-flight-mass spectrometry (nano-LC-Q-ToF-MS). As a model system, the mycotoxin ochratoxin A (OTA) and cross-reacting mycotoxin analogues were analysed in wheat and cereal samples, after a simple extraction, using the FCIA with anti-OTA Mabs. The limit of detection for OTA was 0.15 ng/g, which is far below the lowest maximum level of 3 ng/g established by the European Union. In the immunomagnetic isolation method, a 350-times-higher amount of beads was used to trap ochratoxins from sample extracts. Following a wash step, bound ochratoxins were dissociated from the Mabs using a small volume of acidified acetonitrile/water (2/8 v/v) prior to separation plus identification with nano-LC-Q-ToF-MS. In screened suspect naturally contaminated samples, OTA and its non-chlorinated analogue ochratoxin B were successfully identified by full scan accurate mass spectrometry as a proof of concept for identification of unknown but cross-reacting emerging mycotoxins. Due to the miniaturisation and bioaffinity isolation, this concept might be applicable for the use of other and more expensive bioreagents such as transport proteins and receptors for screening and identification of known and unknown (or masked) emerging food contaminants

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence

    Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases

    Cashew nut allergy: clinical relevance and allergen characterisation

    Get PDF
    Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/ 0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).info:eu-repo/semantics/publishedVersio
    corecore