13 research outputs found

    Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling

    Get PDF
    Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume

    Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species

    Get PDF
    The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring

    Single nucleotide polymorphisms of the heat shock protein 90 gene in varicocele-associated infertility

    No full text
    PURPOSE: Varicoceles are associated with impaired testicular function and male infertility, but the molecular mechanisms by which fertility is affected have not been satisfactorily explained. Spermatogenesis might be affected by increased scrotal temperature, such as that caused by varicocele. HSP90 is a molecular chaperone expressed in germ cells and is related to spermatogenesis, motility, and both heat and oxidative stress. Possible correlations between coding single region nucleotide polymorphisms (cSNPs) in the HSP90 gene in patients with varicocele associated with infertility were analyzed, and polymorphisms in these exons were characterized through DNA sequencing. MATERIALS AND METHODS: PCR-SSCP and DNA sequencing were used to search for mutations in 18 infertile patients with varicocele, 11 patients with idiopathic infertility and 12 fertile men. DNA was extracted from leucocytes for PCR amplification and SSCP analysis. DNA from samples with an altered band pattern in the SSCP was then sequenced to search for polymorphisms. RESULTS: Three silent polymorphisms that do not lead to amino acid substitutions were identified. CONCLUSION: Mutations in the HSP90 gene do not appear to be a common cause of male factor infertility. The low incidence of gene variation, or SNPs, in infertile men demonstrates that this gene is highly conserved and thus confirms its key role in spermatogenesis and response to heat stress

    Substitution of only two residues of human Hsp90α causes impeded dimerization of Hsp90β

    Get PDF
    Two isoforms of the 90-kDa heat-shock protein (Hsp90), i.e., Hsp90α and Hsp90β, are expressed in the cytosol of mammalian cells. Although Hsp90 predominantly exists as a dimer, the dimer-forming potential of the β isoform of human and mouse Hsp90 is less than that of the α isoform. The 16 amino acid substitutions located in the 561–685 amino acid region of the C-terminal dimerization domain should be responsible for this impeded dimerization of Hsp90β (Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K. Eur J Biochem 233: 1–8, 1995). The present study was performed to define the amino acid substitutions that cause the impeded dimerization of Hsp90β. Bacterial two-hybrid analysis revealed that among the 16 amino acids, the conversion from Ala558 of Hsp90β to Thr566 of Hsp90α and that from Met621 of Hsp90β to Ala629 of Hsp90α most efficiently reversed the dimeric interaction, and that the inverse changes from those of Hsp90α to Hsp90β primarily explained the impeded dimerization of Hsp90β We conclude that taken together, the conversion of Thr566 and Ala629 of Hsp90α to Ala558 and Met621 is primarily responsible for impeded dimerization of Hsp90β
    corecore