1,569 research outputs found
Recommended from our members
Determinants of Phage Host Range in Staphylococcus Species.
Bacteria in the genus Staphylococcus are important targets for phage therapy due to their prevalence as pathogens and increasing antibiotic resistance. Here we review Staphylococcus outer surface features and specific phage resistance mechanisms that define host range - the set of strains an individual phage can potentially infect. Phage infection goes through five distinct phases - attachment, uptake, biosynthesis, assembly and lysis. Adsorption inhibition, encompassing outer surface teichoic acid receptor alteration, elimination, or occlusion, limits successful phage attachment and entry. Restriction-modification systems (in particular, type I and IV systems), which target phage DNA inside the cell, serve as the major barriers to biosynthesis as well as transduction and horizontal gene transfer between clonal complexes and species. Resistance to late stages of infection occurs through mechanisms such as assembly interference, in which staphylococcal pathogenicity islands siphon away superinfecting phage proteins to package their own DNA. While genes responsible for teichoic acid biosynthesis, capsule, and restriction-modification are found in most Staphylococcus strains, a variety of other host-range determinants (e.g., CRISPRs, abortive infection, and superinfection immunity) are sporadic. Fitness costs of phage resistance through teichoic acid structure alteration could make staphylococcal phage therapies promising, but host range prediction is complex because of the large number of genes involved, many with unknown roles. In addition, little is known about genetic determinants that contribute to host range expansion in the phages themselves. Future research must identify host range determinants, characterize resistance development during infection and treatment, and examine population-wide genetic background effects on resistance selection
Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct. Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions
Genome sequences of the zoonotic pathogens Chlamydia psittaci 6BC and Cal10
Chlamydia psittaci is a highly prevalent avian pathogen and the cause of a potentially lethal zoonosis, causing life-threatening pneumonia in humans. We report the genome sequences of C. psittaci 6BC, the prototype strain of the species, and C. psittaci Cal10, a widely used laboratory strain. Β© 2011, American Society for Microbiology
Evidence for a fractional quantum Hall state with anisotropic longitudinal transport
At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau
level (LL), a clean two-dimensional electron system (2DES) exhibits numerous
incompressible liquid phases which display the fractional quantized Hall effect
(FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break
rotational symmetry, exhibiting resistivities which are isotropic in the plane.
In contrast, at lower fields, when the Fermi level lies in the third
and several higher LLs, the 2DES displays a distinctly different class of
collective states. In particular, near half filling of these high LLs the 2DES
exhibits a strongly anisotropic longitudinal resistance at low temperatures
(Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not
exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing
broken rotational symmetry and orientational order (Koulakov et al., 1996;
Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999;
Fradkin et al, 2010). Here we report a surprising new observation: An
electronic configuration in the N=1 second LL whose resistivity tensor
simultaneously displays a robust fractionally quantized Hall plateau and a
strongly anisotropic longitudinal resistance resembling that of the stripe
phases.Comment: Nature Physics, (2011
Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing
The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a βone reactionβ genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing
The Conserved Tarp Actin Binding Domain Is Important for Chlamydial Invasion
The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells
CD14 C-159T and Toll-Like Receptor 4 Asp299Gly Polymorphisms in Surviving Meningococcal Disease Patients
BACKGROUND: Carriage of Neisseria meningitidis occurs approximately in 10% of the population, onset of invasive meningococcal disease (IMD) cannot be predicted and differs between ages. It remains unclear, which host factors determine invasion of the bloodstream by the bacteria. Innate immunity has a very important role in the first recognition of invading pathogens. The functional single nucleotide polymorphisms (SNPs) CD14 C-159T and toll-like receptor 4 (TLR4) Asp299Gly have been associated with the risk of gram-negative infections. However, their role in development of IMD still remains unclear. Our aim was to investigate the influence of CD14 C-159T and TLR4 Asp299Gly polymorphisms on the risk of IMD. METHODOLOGY/PRINCIPAL FINDINGS: It was a retrospective case control study. Surviving Austrian meningococcal disease patients were enrolled by sending buccal swabs for DNA analysis. 185 cases with a proven meningococcal infection and 770 healthy controls were enrolled. In surviving meningococcal disease patients DNA analysis of CD14 C-159T and TLR 4 Asp299Gly polymorphisms was performed, as they are part of the innate immune response to bacterial determinants. CD14 C-159T and TLR4 Asp299Gly SNPs were not significantly associated with the presence of IMD when compared to healthy controls. The odds ratio for CD14 C-159T SNP was 1.14 (95% confidence interval (CI) 0.91-1.43; p = 0.266). In TLR4 Asp 299 Gly SNP the odds ratio was 0.78 (CI 0.47-1.43; p = 0.359). CONCLUSION/SIGNIFICANCE: We could not observe a significant influence of CD14 C-159T and TLR4 Asp299Gly polymorphisms on the risk of developing IMD in surviving meningococcal disease patients. To our knowledge, this is the first study investigating the influence of the CD14 C-159T SNP on the susceptibility to IMD
IFN-Ξ³-Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy
Chlamydial infection of the host cell induces Gamma interferon (IFNΞ³), a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNΞ³-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNΞ³-stimulated mouse embryonic fibroblasts (MEFs). We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNΞ³, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5β/β MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNΞ³-induced Atg5β/β cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6β/β) MEFs, in which chlamydial growth is enhanced, do not respond to IFNΞ³ even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction
Genetic variation and linkage disequilibrium in Bacillus anthracis
We performed whole-genome amplification followed by hybridization of custom-designed resequencing arrays to resequence 303β
kb of genomic sequence from a worldwide panel of 39 Bacillus anthracis strains. We used an efficient algorithm contained within a custom software program, UniqueMER, to identify and mask repetitive sequences on the resequencing array to reduce false-positive identification of genetic variation, which can arise from cross-hybridization. We discovered a total of 240 single nucleotide variants (SNVs) and showed that B. anthracis strains have an average of 2.25 differences per 10,000 bases in the region we resequenced. Common SNVs in this region are found to be in complete linkage disequilibrium. These patterns of variation suggest there has been little if any historical recombination among B. anthracis strains since the origin of the pathogen. This pattern of common genetic variation suggests a framework for recognizing new or genetically engineered strains
- β¦