15,316 research outputs found

    The role of Facebook groups in the management and raising of awareness of antidepressant withdrawal: is social media filling the void left by health services?

    Get PDF
    Introduction: Antidepressant withdrawal is experienced by about half of people who try to reduce or come off their medication. It can be a debilitating, long lasting process. Many clinicians misdiagnose or minimise symptoms, inadvertently prolonging suffering. Most are unable to help patients safely taper off. There has been little research into peer support communities that are playing an increasingly important role in helping people withdraw from psychiatric medications. Method: To illustrate the growth and activities of Facebook withdrawal groups we examined thirteen such groups. All were raising awareness of, and supporting individuals tapering off, antidepressants and were followed for 13 months. A further three groups were added for the last 5 months of the study. Results: In June 2020, the groups had a total membership of 67,125, of which, 60,261 were in private groups. The increase in membership for the 13 groups over the study period was 28.4%. One group was examined in greater detail. Group membership was 82.5% female, as were 80% of the Administrators and Moderators, all of whom are lay volunteers. Membership was international but dominated by the US (51.2%). The most common reason for seeking out this group was failed clinician-led tapers. Discussion: The results are discussed in the context of research on the prevalence, duration and severity of antidepressant withdrawal. We question why so many patients seek help in peer-led Facebook groups, rather than relying on the clinicians that prescribed the medications. The withdrawal experiences of tens of thousands of people remain hidden in these groups where they receive support to taper when healthcare services should be responsible. Further research should focus on the methods of support and tapering protocols used in these groups to enable improved, more informed support by clinicians. Support from Governments and healthcare agencies is also needed, internationally, to address this issue

    Low-power radio galaxy environments in the Subaru/XMM-Newton Deep Field at z~0.5

    Full text link
    We present multi-object spectroscopy of galaxies in the immediate (Mpc-scale) environments of four low-power (L_1.4 GHz < 10^25 W/Hz) radio galaxies at z~0.5, selected from the Subaru/XMM-Newton Deep Field. We use the spectra to calculate velocity dispersions and central redshifts of the groups the radio galaxies inhabit, and combined with XMM-Newton (0.3-10 keV) X-ray observations investigate the L_X--sigma_v and T_X--sigma_v scaling relationships. All the radio galaxies reside in moderately rich groups -- intermediate environments between poor groups and rich clusters, with remarkably similar X-ray properties. We concentrate our discussion on our best statistical example that we interpret as a low-power (FRI) source triggered within a sub-group, which in turn is interacting with a nearby group of galaxies, containing the bulk of the X-ray emission for the system -- a basic scenario which can be compared to more powerful radio sources at both high (z>4) and low (z<0.1) redshifts. This suggests that galaxy-galaxy interactions triggered by group mergers may play an important role in the life-cycle of radio galaxies at all epochs and luminosities.Comment: 12 pages, 7 figures, accepted for publication in MNRAS. High resolution version available upon reques

    Spin-Peierls states of quantum antiferromagnets on the CaV4O9Ca V_4 O_9 lattice

    Full text link
    We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1/5-depleted square lattice found in CaV4O9Ca V_4 O_9. The possible phases of the quantum dimer model on this lattice are obtained by a mapping to a quantum-mechanical height model. In addition to the ``decoupled'' phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously-broken lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure

    Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

    Full text link
    The soft X-ray flux produced by solar axions in the Earth's magnetic field is evaluated in the context of ESA's XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The EPIC count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After examining the constituent observations spatially, temporally and in terms of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earth's magnetic field. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the micro-eV range. Comparisons with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the 0.01 eV range. Preliminary results are given of a search for axion-conversion X-ray lines, in particular the predicted features due to silicon, sulphur and iron in the solar core, and the 14.4 keV transition line from 57Fe.Comment: Accepted for publication in MNRAS. 67 pages total, including 39 figures, 6 table

    An RVB phase in the triangular lattice quantum dimer model

    Full text link
    We study the quantum dimer model on the triangular lattice, which is expected to describe the singlet dynamics of frustrated Heisenberg models in phases where valence bond configurations dominate their physics. We find, in contrast to the square lattice, that there is a truly short ranged resonating valence bond (RVB) phase with no gapless collective excitations and with deconfined, gapped, spinons for a {\it finite} range of parameters. We also establish the presence of three crystalline phases in this system.Comment: 4 pages, 2 figures, Revtex 3.

    Chandra Observations of "The Antennae" Galaxies (NGC 4038/39)

    Get PDF
    We report the results of a deep Chandra ACIS pointing at the merging system NGC 4038/39. We detect an extraordinarily luminous population of X-ray sources, with luminosity well above that of XRBs in M31 and the Milky Way. If these sources are unbeamed XRBs, our observations may point to them being 10-100Mo black hole counterparts. We detect an X-ray bright hot ISM, with features including bright superbubbles associated with the actively star-forming knots, regions where hot and warm (Hα\alpha) ISM intermingle, and a large-scale outflow.Comment: 7 pages, 10 figures, Accepted for publication in Ap

    Inferring the neutron star equation of state from binary inspiral waveforms

    Get PDF
    The properties of neutron star matter above nuclear density are not precisely known. Gravitational waves emitted from binary neutron stars during their late stages of inspiral and merger contain imprints of the neutron-star equation of state. Measuring departures from the point-particle limit of the late inspiral waveform allows one to measure properties of the equation of state via gravitational wave observations. This and a companion talk by J. S. Read reports a comparison of numerical waveforms from simulations of inspiraling neutron-star binaries, computed for equations of state with varying stiffness. We calculate the signal strength of the difference between waveforms for various commissioned and proposed interferometric gravitational wave detectors and show that observations at frequencies around 1 kHz will be able to measure a compactness parameter and constrain the possible neutron-star equations of state.Comment: Talk given at the 12th Marcel Grossman Meeting, Paris, France, 12-18 Jul 200

    Multiresolution community detection for megascale networks by information-based replica correlations

    Full text link
    We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation of information, and other measures in principle give a quantitative estimate of the "best" resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can in principle be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the "resolution limit" that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40 million nodes and more than one billion edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200000 nodes and 10 million edges on a single processor with exceptionally high accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for community detection and O(L^{1.3} log N) for the multiresolution algorithm where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change

    Charge order, superconductivity, and a global phase diagram of doped antiferromagnets

    Full text link
    We investigate the interplay between lattice-symmetry breaking and superconducting order in a two-dimensional model of doped antiferromagnets, with long-range Coulomb interactions and Sp(2N) spin symmetry, in the large-N limit. Our results motivate the outline of a global phase diagram for the cuprate superconductors. We describe the quantum transitions between the phases, the evolution of their fermion excitation spectrum, and the experimental implications.Comment: 4 pages, 4 figs, final version as publishe
    • …
    corecore