14,280 research outputs found
Recommended from our members
Regional and global dust storms on Mars investigated using data assimilation
Recommended from our members
Midwinter suppression of baroclinic storm activity on Mars: observations and models
Baroclinic instability and intense traveling wave activity on Mars is well known to occur in “storm zones” (Hollingsworth et al. 1996) close to the edge of the advancing or retreating polar ice cap. Such activity usually sets in during Martian fall and continues until the onset of the summer season when large-scale instability mostly ceases as the atmosphere is no longer baroclinically unstable. The stormy season is typically characterized by large-scale, zonally-propagating waves with zonal wavenumbers m = 1-3, the lower wavenumber modes typically penetrating to considerable altitude though may also be surface-intensified.
As we show below, however, some observations suggest that this eddy activity does not persist uniformly throughout the autumn, winter and spring seasons, but appears to die down quite consistently within 10 sols or so either side of the winter solstice. This midwinter ‘solsticial pause’ appears to be a sufficiently consistent feature of each winter season in both hemispheres to be regarded as a significant feature of Martian climatology, and could affect a variety of aspects of Martian meteorology including global heat and momentum transport, occurrence of dust storms etc.
A somewhat similar phenomenon has also been documented for the Earth (e.g. Nakamura 1992; Penny et al. 2010), especially in relation to seasonal variations in the north Pacific storm tracks. The cause of this phenomenon is still not well established, though suggested mechanisms include the effects of enhanced barotropic shear (the so-called ‘barotropic governor’ (James & Gray 1986) and interactions with topography over central Asia.
In this presentation we examine evidence for this phenomenon in the assimilated record of Martian climate from the Thermal Emission Spectrometer on board the Mars Global Surveyor mission (MGSTES), in conjunction with the UK version of the LMD-Oxford-OU-IAA Mars GCM (Forget et al. 1999; Montabone et al. 2006; Lewis et al. 2007). This is further corroborated in other evidence from seasonal variations in the incidence of local and regional dust storms that owe their origin to circumpolar baroclinic storms. We also discuss the extent to which this ‘solsticial pause’ phenomenon is reproduced in stand-alone atmospheric models and present results of some simulations to test a number of hypotheses for its dynamical origin on Mars
Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs
We present exact calculations of the zero-temperature partition function
(chromatic polynomial) and the (exponent of the) ground-state entropy for
the -state Potts antiferromagnet on families of cyclic and twisted cyclic
(M\"obius) strip graphs composed of -sided polygons. Our results suggest a
general rule concerning the maximal region in the complex plane to which
one can analytically continue from the physical interval where . The
chromatic zeros and their accumulation set exhibit the rather
unusual property of including support for and provide further
evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres
Investigation of long-lived eddies on Jupiter
Quasi-geostrophic, two layer models of the Jovian atmosphere are under development; these may be used to simulate eddy phemonena in the atmosphere and include tracer dynamics explicitly. The models permit the investigation of the dynamics of quasi-geostrophic eddies under more controlled conditions than are possible in the laboratory. They can also be used to predict the distribution and behavior of tracer species, and hence to discriminate between different models of the mechanisms forcing the eddies, provided suitable observations can be obtained. At the same time, observational strategies are being developed for the Near Infrared Mapping Spectrometer on the Galileo Orbiter, with the objective of obtaining composition measurements for comparison with the models. Maps of features at thermal infrared wavelengths near 5 micron and reflected sunlight maps as a function of wavelength and phase angle will be obtained. These should provide further useful information on the morphology, composition and microstructure of clouds within eddy features. Equilibrium chemistry models which incorporate advection may then be used to relate these results of the dynamical models and provide addtional means of classifying different types of eddies
Dense loops, supersymmetry, and Goldstone phases in two dimensions
Loop models in two dimensions can be related to O(N) models. The
low-temperature dense-loops phase of such a model, or of its reformulation
using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for
N<2. We argue that this phase is generic for -2< N <2 when crossings of loops
are allowed, and distinct from the model of non-crossing dense loops first
studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are
supported by our numerical results, and by a lattice model solved exactly by
Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure
Spin-Peierls states of quantum antiferromagnets on the lattice
We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on
the 1/5-depleted square lattice found in . The possible phases of
the quantum dimer model on this lattice are obtained by a mapping to a
quantum-mechanical height model. In addition to the ``decoupled'' phases found
earlier, we find a possible intermediate spin-Peierls phase with
spontaneously-broken lattice symmetry. Experimental signatures of the different
quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure
Bulk and edge correlations in the compressible half-filled quantum Hall state
We study bulk and edge correlations in the compressible half-filled state,
using a modified version of the plasma analogy. The corresponding plasma has
anomalously weak screening properties, and as a consequence we find that the
correlations along the edge do not decay algebraically as in the Laughlin
(incompressible) case, while the bulk correlations decay in the same way. The
results suggest that due to the strong coupling between charged modes on the
edge and the neutral Fermions in the bulk, reflected by the weak screening in
the plasma analogue, the (attractive) correlation hole is not well defined on
the edge. Hence, the system there can be modeled as a free Fermi gas of {\em
electrons} (with an appropriate boundary condition). We finally comment on a
possible scenario, in which the Laughlin-like dynamical edge correlations may
nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate
properly the 8 magnificent figure
Ground State Entropy of Potts Antiferromagnets on Cyclic Polygon Chain Graphs
We present exact calculations of chromatic polynomials for families of cyclic
graphs consisting of linked polygons, where the polygons may be adjacent or
separated by a given number of bonds. From these we calculate the (exponential
of the) ground state entropy, , for the q-state Potts model on these graphs
in the limit of infinitely many vertices. A number of properties are proved
concerning the continuous locus, , of nonanalyticities in . Our
results provide further evidence for a general rule concerning the maximal
region in the complex q plane to which one can analytically continue from the
physical interval where .Comment: 27 pages, Latex, 17 figs. J. Phys. A, in pres
Confinement of Slave-Particles in U(1) Gauge Theories of Strongly-Interacting Electrons
We show that slave particles are always confined in U(1) gauge theories of
interacting electron systems. Consequently, the low-lying degrees of freedom
are different from the slave particles. This is done by constructing a dual
formulation of the slave-particle representation in which the no-double
occupany constraint becomes linear and, hence, soluble. Spin-charge separation,
if it occurs, is due to the existence of solitons with fractional quantum
numbers
Topologically protected quantum states and quantum computing in Josephson junctions arrays
We review recent results on a new class of Josephson arrays which have non-trivial topology
and exhibit a novel quantum states at low temperatures. One of these states is characterized by
long range order in a two Cooper pair condensate and by a discrete topological order parameter.
The second state is insulating and can be considered as a result of evolution of the former state due
to Bose-condensation of usual superconductive vortices with a flux quantum 0. Quantum phase
transition between these two states is controlled by variation of external magnetic field. Both the
superconductive and insulating states are characterized by the presence of 2K-degenerate ground
states, with K being the number of topologically different cycles existing in the plane of the array.
This degeneracy is «protected» from the external perturbations (and noise) by the topological order
parameter and spectral gap. We show that in ideal conditions the low order effect of the external
perturbations on this degeneracy is exactly zero and that deviations from ideality lead to only
exponentially small effects of perturbations. We argue that this system provides a physical implementation
of an ideal quantum computer with a built in error correction. A number of relatively
simple «echo-like» experiments possible on small-size arrays are discussed
- …