133 research outputs found

    Modeling long-range interactions across the visual field in stereo correspondence

    Get PDF
    When the eyes are converged, most objects in the visual scene will have a significant vertical disparity as measured at the retina. The pattern of vertical disparity across the retina is largely independent of object depth, depending mainly on the particular eye position adopted. Recently, Phillipson and Read (2010, European Journal of Neuroscience, doi:10.1111/j.1460-9568.2010.07454.x) showed that humans are better at achieving stereo correspondence when the vertical disparity field indicated infinite viewing distance, even when the physical viewing distance was just 30cm. They interpreted this as indicating that disparity encoding is optimized for long viewing distances, and is not updated to reflect changes in eye posture. Their results also indicated a significant effect of the visual periphery. Performance was better when the vertical disparity across the entire visual field was consistent with a given binocular eye position – even when this was not the eye position actually adopted – than when the vertical disparity beyond 20o eccentricity indicated a different eye position than that within 20o eccentricity. This is a surprising result, since (i) the task was to detect a target 8o in diameter, extending from 10o to 18o eccentricity, so information beyond 20o was completely irrelevant to the task, and (ii) many previous results indicate that the visual system detects and uses vertical disparity in local regions, even when the global vertical disparity field is not consistent with any single binocular eye position. Here, I show that this effect can be explained by a template-matching model in which the response of a population of disparity-detectors is compared with stored templates of the response expected to stimuli of known disparity

    Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus-response curve.

    Get PDF
    The longitudinal chromatic aberration (LCA) of the eye creates a chromatic blur on the retina that is an important cue for accommodation. Although this mechanism can work optimally in broadband illuminants such as daylight, it is not clear how the system responds to the narrowband illuminants used by many modern displays. Here, we measured pupil and accommodative responses as well as visual acuity under narrowband light-emitting diode (LED) illuminants of different peak wavelengths. Observers were able to accommodate under narrowband light and compensate for the LCA of the eye, with no difference in the variability of the steady-state accommodation response between narrowband and broadband illuminants. Intriguingly, our subjects compensated more fully for LCA at nearer distances. That is, the difference in accommodation to different wavelengths became larger when the object was placed nearer the observer, causing the slope of the accommodation response curve to become shallower for shorter wavelengths and steeper for longer ones. Within the accommodative range of observers, accommodative errors were small and visual acuity normal. When comparing between illuminants, when accommodation was accurate, visual acuity was worst for blue narrowband light. This cannot be due to the sparser spacing for S-cones, as our stimuli had equal luminance and thus activated LM-cones roughly equally. It is likely because ocular LCA changes more rapidly at shorter wavelength and so the finite spectral bandwidth of LEDs corresponds to a greater dioptric range at shorter wavelengths. This effect disappears for larger accommodative errors, due to the increased depth of focus of the eye

    Visual suppression in intermittent exotropia during binocular alignment.

    Get PDF
    PURPOSE To investigate the cortical mechanisms that prevent diplopia in intermittent exotropia (X(T)) during binocular alignment (orthotropia). METHODS The authors studied 12 X(T) patients aged 5 to 22 years. Seventy-five percent had functional stereo vision with stereoacuity similar to that of 12 age-matched controls (0.2-3.7 min arc). Identical face images were presented to the two eyes for 400 ms. In one eye, the face was presented at the fovea; in the other, offset along the horizontal axis with up to 12° eccentricity. The task was to indicate whether one or two faces were perceived. RESULTS All X(T) patients showed normal diplopia when the nonfoveal face was presented to nasal hemiretina, though with a slightly larger fusional range than age-matched controls. However, 10 of 12 patients never experienced diplopia when the nonfoveal face was presented to temporal hemiretina (i.e., when the stimulus simulated exodeviation). Patients showed considerable variability when the single image was perceived. Some patients suppressed the temporal stimulus regardless of which eye viewed it, whereas others suppressed a particular eye even when it viewed the foveal stimulus. In two patients, the simulated exodeviation might have triggered a shift from normal to anomalous retinal correspondence. CONCLUSIONS Antidiplopic mechanisms in X(T) can be reliably triggered by purely retinal information during orthotropia, but the nature of these mechanisms varies between patients

    Two common psychophysical measures of surround suppression reflect independent neuronal mechanisms.

    Get PDF
    Psychophysical surround suppression is believed to reflect inhibitory neuronal mechanisms in visual cortex. In recent years, two psychophysical measures of surround suppression have been much studied: (i) duration thresholds on a motion-discrimination task (which are worse for larger than for smaller stimuli) and (ii) contrast thresholds on a contrast-detection task (which are worse when grating stimuli are surrounded by a stimulus of the same orientation than when they are presented in isolation or surrounded by a stimulus of orthogonal orientation). Changes in both metrics have been linked to several different human conditions, including aging, differences in intelligence, and clinical disorders such as schizophrenia, depression, and autism. However, the exact nature of the neuronal correlate underlying these phenomena remains unclear. Here, we use an individual-differences approach to test the hypothesis that both measures reflect the same property of the visual system, e.g., the strength of GABA-ergic inhibition across visual cortex. Under this hypothesis we would expect the two measures to be significantly positively correlated across individuals. In fact, they are not significantly correlated. In addition, we replicate the previously reported correlation between age and motion-discrimination surround suppression, but find no correlation between age and contrast-detection surround suppression. We conclude that the two forms of psychophysical surround suppression arise independently from different cortical mechanisms

    Stereoscopic 3-D content appears relatively veridical when viewed from an oblique angle

    Get PDF
    Geometrically, stereoscopic 3-D (S3D) content should appear distorted unless viewed from the position for which the content was produced. Almost all commercial and laboratory S3D content is generated assuming that it will be presented on a screen frontoparallel to the viewer. However, in cinema and the home, S3D content is regularly viewed from oblique angles, and yet shapes are not usually perceived to be distorted. It is not yet known whether this is simply because viewers are insensitive to incorrect viewing angles or because viewers automatically compensate for oblique viewing, as they do for 2-D content. Here, we investigate this using a canonical-form paradigm. We show that S3D content can indeed appear warped when viewed from oblique angles, and that this effect is more pronounced than for 2-D content. We hypothesized that motion cues in the content would aid in the correct perception of S3D content, making it appear more natural even when viewed obliquely, but we find little support for this idea. However, the perceptual distortions are still small, and viewers do compensate to some extent for oblique viewing. We conclude that, at least as regards object distortion, oblique viewing is unlikely to be substantially more of a problem for S3D content than it already is for 2-D

    Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task.

    Get PDF
    A well-studied paradox of motion perception is that, in order to correctly judge direction in high-contrast stimuli, subjects need to observe motion for longer in large stimuli than in small stimuli. This effect is one of several perceptual effects known generally as "surround suppression." It is usually attributed to center-surround antagonism between neurons in visual cortex, believed to be mediated by GABA-ergic inhibition. Accordingly, several studies have reported that this index of surround suppression is reduced in groups known to have reduced GABA-ergic inhibition, including older people and people with schizophrenia and major depressive disorder. In this study, we examined the effect on this index of moderate amounts of ethanol alcohol. Among its many effects on the nervous system, alcohol potentiates GABA-ergic transmission. We therefore hypothesized that it should further impair the perception of motion in large stimuli, resulting in a stronger surround-suppression index. This prediction was not borne out. Alcohol consumption slightly worsened duration thresholds for both large and small stimuli, but their ratio did not change significantly

    Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation

    Get PDF
    Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations
    • …
    corecore