50 research outputs found

    Nintedanib, pirfenidona y células madre como tratamiento de las enfermedades pulmonares intersticiales Fibrosantes Progresivas

    Get PDF
    Introducción: Las enfermedades pulmonares intersticiales fibrosantes progresivas las conforman un grupo de patologías que se producen cuando la fibrosis avanza a pesar de las medidas terapéuticas. El tratamiento de estas patologías continúa en investigación, pues en los últimos años se han desarrollado fármacos antifibróticos que prometen mejorar la calidad de vida del paciente y retardar la progresión de la enfermedad, a esto se suman los nuevos estudios de trasplante de células madre que no solo evidencian un perfil de seguridad aceptable y bien tolerado, sino efectos adversos manejables. Objetivo: Describir al Nintedanib, Pirfenidona y células madre como tratamiento de las enfermedades pulmonares intersticiales fibrosantes progresivas. Metodología: Se realizó una revisión sistemática usando el método PRISMA. Resultados: Se obtuvieron 473 artículos recuperados de las bases de datos de Pubmed y Scopus, de los cuales se seleccionaron 16 de acuerdo con los criterios de elegibilidad. Conclusiones: Los hallazgos de esta investigación fueron que Nintedanib y Pirfenidona ralentizan la disminución de la Capacidad Vital Forzada, el riesgo de mortalidad es mayor en pacientes con fibrosis idiopática que en otro tipo de fibrosis, los efectos adversos más comunes asociados a Nintedanib son la diarrea, nausea, vómito y cefalea, mientras que con Pirfenidona son los trastornos gastrointestinales, fatiga, erupciones cutáneas, mareo, fotosensibilidad y pérdida de peso. La terapia con células madre demuestra seguridad y efectos adversos tolerables y manejables; aunque, se necesitan más estudios

    Antineoplastic-related cardiotoxicity, morphofunctional aspects in a murine model: contribution of the new tool 2D-speckle tracking

    Get PDF
    Objective: Considering that global left ventricular systolic radial strain is a sensitive technique for the early detection of left ventricular dysfunction due to antineoplastics and the analysis of segmental myocardial contractility, we evaluated this technique for early detection of trastuzumab-related cardiotoxicity by comparing it with cardiac structural damage. Methods: Groups of six mice were injected with trastuzumab or doxorubicin, used either as single agents or in combination. Cardiac function was evaluated by transthoracic echocardiography measurements before and after treatment for 2 or 7 days, by using a Vevo 2100 high-resolution imaging system. After echocardiography, mice were euthanized, and hearts were processed for histological evaluations, such as cardiac fibrosis, apoptosis, capillary density, and inflammatory response. Results: Trastuzumab-related cardiotoxicity was detected early by 2D strain imaging. Radial strain was reduced after 2 days in mice treated with trastuzumab alone (21.2%±8.0% vs 40.5%±4.8% sham; P<0.01). Similarly, trastuzumab was found to induce apoptosis, capillary density reduction, and inflammatory response in cardiac tissue after 2 days of treatment, in a fashion similar to doxorubicin. On the contrary, fractional shortening reduction and cardiac fibrosis were observed only after 7 days of trastuzumab treatment, in contrast to doxorubicin treatment which induced early fibrosis and fractional shortening reduction. Conclusion: The reduction of left ventricular systolic strain after 2 days of trastuzumab treatment may indicate early myocardial functional damage before the reduction in left ventricular ejection fraction and this early dysfunction is well correlated with structural myocardial damage, such as apoptosis and inflammatory response. Fractional shortening reduction after 7 days of trastuzumab treatment is related to fibrosis in cardiac tissue

    Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production

    Get PDF
    The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity

    A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice

    Get PDF
    Background: The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response.Methods: In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious.Results: Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4+ T cell reduction and CD8+ T cell increase. Furthermore, a significant reduction in the percentage of both CD25+FoxP3+ and CD25+CD127low regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8+ T cell response specific to B16 naturally expressed Trp2 TAA.Conclusion: The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity

    Ranolazine attenuates trastuzumab-induced heart dysfunction by modulating ROS production

    Get PDF
    The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity

    Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX

    Get PDF
    Despite the advancement of clinical and preclinical research on PCa, which resulted in the last five years in a decrement of disease incidence by 3-4%, it remains the most frequent cancer in men and the second for mortality rate. Based on this evidence we present a brief dissertation on numerous preclinical models, comparing their advantages and disadvantages; among this we report the PDX mouse models that show greater fidelity to the disease, in terms of histopathologic features of implanted tumor, gene and miRNA expression, and metastatic pattern, well describing all tumor progression stages; this characteristic encourages the translation of preclinical results. These models become particularly useful in meeting the need of new treatments identification that eradicate PCa bone metastases growing, clarifying pathway of angiogenesis, identifying castration-resistant stem-like cells, and studying the antiandrogen therapies. Also of considerable interest are the studies of 3D cell cultures derived from PDX, which have the ability to maintain PDX cell viability with continued native androgen receptor expression, also showing a differential sensitivity to drugs. 3D PDX PCa may represent a diagnostic platform for the rapid assessment of drugs and push personalized medicine. Today the development of preclinical models in vitro and in vivo is necessary in order to obtain increasingly reliable answers before reaching phase III of the drug discovery

    Ccdc6 knock-in mice develop thyroid hyperplasia associated to an enhanced CREB1 activity

    Get PDF
    CCDC6 was originally identified upon rearrangement with RET in human thyroid papillary carcinomas generating the RET/PTC1 oncogene. We have previously reported that CCDC6 interacts with CREB1 and represses its transcriptional activity. Since the function of at least one allele of CCDC6 is lost following RET/PTC1 rearrangements, we aimed at the generation of mice, carrying a CCDC6 mutant gene. Previous studies suggested that the coiled-coil domain of CCDC6, mainly encoded by human exon 2, is required for the protein function. Therefore, we engineered a murine Ccdc6 construct, carrying a deletion of the exon 2, that was able to exert only a mild repression on CREB1 transcriptional activity, with respect to the wild type Ccdc6. Subsequently, we generated Ccdc6-ex2 knock-in mice. These mice developed thyroid hyperplasia associated with an enhanced CREB1 activity and an increased expression of the CREB-1 regulated genes. These results strongly support a CCDC6 promoting role, ascribed to its functional impairment, in the development of thyroid papillary carcinomas harboring the RET/PTC1 oncogene

    Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    Get PDF
    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4(+) and CD8(+) T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation

    PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration

    Get PDF
    PATZ1, a POZ-Zinc finger protein, is emerging as an important regulator of development and cancer, but its cancer-related function as oncogene or tumor-suppressor is still debated. Here, we investigated its possible role in thyroid carcinogenesis. We demonstrated PATZ1 is down-regulated in thyroid carcinomas compared to normal thyroid tissues, with an inverse correlation to the degree of cell differentiation. In fact, PATZ1 expression was significantly further down-regulated in poorly differentiated and anaplastic thyroid cancers compared to the papillary histotype, and it resulted increasingly delocalized from the nucleus to the cytoplasm proceeding from differentiated to undifferentiated thyroid carcinomas. Restoration of PATZ1 expression in three thyroid cancer-derived cell lines, all characterized by fully dedifferentiated cells, significantly inhibited their malignant behaviors, including in vitro proliferation, anchorage-independent growth, migration and invasion, as well as in vivo tumor growth. Consistent with recent studies showing a role for PATZ1 in the p53 pathway, we showed that ectopic expression of PATZ1 in thyroid cancer cells activates p53-dependent pathways opposing epithelial-mesenchymal transition and cell migration to prevent invasiveness. These results provide insights into a potential tumor-suppressor role of PATZ1 in thyroid cancer progression, and thus may have potential clinical relevance for the prognosis and therapy of thyroid cancer
    corecore