3 research outputs found

    Perturbative quantum gauge invariance: Where the ghosts come from

    Full text link
    A condensed introduction to quantum gauge theories is given in the perturbative S-matrix framework; path integral methods are used nowhere. This approach emphasizes the fact that it is not necessary to start from classical gauge theories which are then subject to quantization, but it is also possible to recover the classical group structure and coupling properties from purely quantum mechanical principles. As a main tool we use a free field version of the Becchi-Rouet-Stora-Tyutin gauge transformation, which contains no interaction terms related to a coupling constant. This free gauge transformation can be formulated in an analogous way for quantum electrodynamics, Yang-Mills theories with massless or massive gauge bosons and quantum gravity.Comment: 28 pages, LATEX. Some typos corrected, version to be publishe

    Bounds for Bose-Einstein Correlation Functions

    Full text link
    Bounds for the correlation functions of identical bosons are discussed for the general case of a Gaussian density matrix. In particular, for a purely chaotic system the two-particle correlation function must always be greater than one. On the other hand, in the presence of a coherent component the correlation function may take values below unity. The experimental situation is briefly discussed.Comment: 7 pages, LaTeX, DMR-THEP-93-5/
    corecore