45 research outputs found
Viral Etiology of Influenza-Like Illnesses in Antananarivo, Madagascar, July 2008 to June 2009
In Madagascar, despite an influenza surveillance established since 1978, little is known about the etiology and prevalence of viruses other than influenza causing influenza-like illnesses (ILIs).From July 2008 to June 2009, we collected respiratory specimens from patients who presented ILIs symptoms in public and private clinics in Antananarivo (the capital city of Madagascar). ILIs were defined as body temperature ≥38°C and cough and at least two of the following symptoms: sore throat, rhinorrhea, headache and muscular pain, for a maximum duration of 3 days. We screened these specimens using five multiplex real time Reverse Transcription and/or Polymerase Chain Reaction assays for detection of 14 respiratory viruses. We detected respiratory viruses in 235/313 (75.1%) samples. Overall influenza virus A (27.3%) was the most common virus followed by rhinovirus (24.8%), RSV (21.2%), adenovirus (6.1%), coronavirus OC43 (6.1%), influenza virus B (3.9%), parainfluenza virus-3 (2.9%), and parainfluenza virus-1 (2.3%). Co-infections occurred in 29.4% (69/235) of infected patients and rhinovirus was the most detected virus (27.5%). Children under 5 years were more likely to have one or more detectable virus associated with their ILI. In this age group, compared to those ≥5 years, the risk of detecting more than one virus was higher (OR = 1.9), as was the risk of detecting of RSV (OR = 10.1) and adenovirus (OR = 4.7). While rhinovirus and adenovirus infections occurred year round, RSV, influenza virus A and coronavirus OC43 had defined period of circulation.In our study, we found that respiratory viruses play an important role in ILIs in the Malagasy community, particularly in children under 5 years old. These data provide a better understanding of the viral etiology of outpatients with ILI and describe for the first time importance of these viruses in different age group and their period of circulation
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Global circulation of respiratory viruses: from local observations to global predictions
International audienc
Burden and Epidemiology of Influenza- and Respiratory Syncytial Virus-Associated Severe Acute Respiratory Illness Hospitalization in Madagascar, 2011-2016
International audienceInfluenza and respiratory syncytial virus (RSV) infections are responsible for substantial global morbidity and mortality in young children and elderly individuals. Estimates of the burden of influenza- and RSV-associated hospitalization are limited in Africa
Evaluation of the influenza sentinel surveillance system in Madagascar, 2009-2014.
International audiencePROBLEM: Evaluation of influenza surveillance systems is poor, especially in Africa.APPROACH: In 2007, the Institut Pasteur de Madagascar and the Malagasy Ministry of Public Health implemented a countrywide system for the prospective syndromic and virological surveillance of influenza-like illnesses. In assessing this system's performance, we identified gaps and ways to promote the best use of resources. We investigated acceptability, data quality, flexibility, representativeness, simplicity, stability, timeliness and usefulness and developed qualitative and/or quantitative indicators for each of these attributes.LOCAL SETTING: Until 2007, the influenza surveillance system in Madagascar was only operational in Antananarivo and the observations made could not be extrapolated to the entire country.RELEVANT CHANGES: By 2014, the system covered 34 sentinel sites across the country. At 12 sites, nasopharyngeal and/or oropharyngeal samples were collected and tested for influenza virus. Between 2009 and 2014, 177 718 fever cases were detected, 25 809 (14.5%) of these fever cases were classified as cases of influenza-like illness. Of the 9192 samples from patients with influenza-like illness that were tested for influenza viruses, 3573 (38.9%) tested positive. Data quality for all evaluated indicators was categorized as above 90% and the system also appeared to be strong in terms of its acceptability, simplicity and stability. However, sample collection needed improvement.LESSONS LEARNT: The influenza surveillance system in Madagascar performed well and provided reliable and timely data for public health interventions. Given its flexibility and overall moderate cost, this system may become a useful platform for syndromic and laboratory-based surveillance in other low-resource settings
The spread of influenza A(H1N1)pdm09 virus in Madagascar described by a sentinel surveillance network.
The influenza A(H1N1)pdm09 virus has been a challenge for public health surveillance systems in all countries. In Antananarivo, the first imported case was reported on August 12, 2009. This work describes the spread of A(H1N1)pdm09 in Madagascar.The diffusion of influenza A(H1N1)pdm09 in Madagascar was explored using notification data from a sentinel network. Clinical data were charted to identify peaks at each sentinel site and virological data was used to confirm viral circulation.From August 1, 2009 to February 28, 2010, 7,427 patients with influenza-like illness were reported. Most patients were aged 7 to 14 years. Laboratory tests confirmed infection with A(H1N1)pdm09 in 237 (33.2%) of 750 specimens. The incidence of patients differed between regions. By determining the epidemic peaks we traced the diffusion of the epidemic through locations and time in Madagascar. The first peak was detected during the epidemiological week 47-2009 in Antananarivo and the last one occurred in week 07-2010 in Tsiroanomandidy.Sentinel surveillance data can be used for describing epidemic trends, facilitating the development of interventions at the local level to mitigate disease spread and impact