63 research outputs found

    Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells

    Get PDF
    BACKGROUND: The asbestos-like toxicity of some engineered carbon nanotubes (CNT), notably their capacity to induce mesothelioma, is a serious cause of concern for public health. Here we show that carcinogenic CNT induce an early and sustained immunosuppressive response characterized by the accumulation of monocytic Myeloid Derived Suppressor Cells (M-MDSC) that counteract effective immune surveillance of tumor cells. METHODS: Wistar rats and C57BL/6 mice were intraperitoneally injected with carcinogenic multi-walled Mitsui-7 CNT (CNT-7) or crocidolite asbestos. Peritoneal mesothelioma development and immune cell accumulation were assessed until 12 months. Leukocyte sub-populations were identified by recording expression of CD11b/c and His48 by flow cytometry. The immunosuppressive activity on T lymphocytes of purified peritoneal leukocytes was assessed in a co-culture assay with activated spleen cells. RESULTS: We demonstrate that long and short mesotheliomagenic CNT-7 injected in the peritoneal cavity of rats induced, like asbestos, an early and selective accumulation of monocytic cells (CD11b/c(int) and His48(hi)) which possess the ability to suppress polyclonal activation of T lymphocytes and correspond to M-MDSC. Peritoneal M-MDSC persisted during the development of peritoneal mesothelioma in CNT-7-treated rats but were only transiently recruited after non-carcinogenic CNT (CNT-M, CNT-T) injection. Peritoneal M-MDSC did not accumulate in mice which are resistant to mesothelioma development. CONCLUSIONS: Our data provide new insights into the initial pathogenic events induced by CNT, adding a new component to the adverse outcome pathway leading to mesothelioma development. The specificity of the M-MDSC response after carcinogenic CNT exposure highlights the interest of this response for detecting the ability of new nanomaterials to cause cancer

    Definition of Biologically Distinct Groups of Conjunctival Melanomas According to Etiological Factors and Implications for Precision Medicine

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-26, pub-electronic 2021-07-30Publication status: PublishedFunder: European Commission; Grant(s): 667787Funder: European Research Council; Grant(s): ERC-ADG-2014 671262Funder: Cancer Research UK; Grant(s): A27412 and A22902Funder: Institut Curie; Grant(s): #Funder: Ligue Contre le Cancer; Grant(s): #Funder: Institut National de la SantĂ© et de la Recherche MĂ©dicale; Grant(s): #Conjunctival melanoma (ConjMel) is a potentially deadly ocular melanoma, originating from partially sunlight-exposed mucosa. We explored the mutational landscape of ConjMel and studied the correlation with etiological factors. We collected 47 primary ConjMel samples and performed next-generation sequencing of 400 genes. Hotspot mutations in BRAF, NRAS, HRAS, and KIT were observed in 16 (34%), 5 (11%), 2, and 2 cases, respectively. Patients with BRAF and CDKN2A-mutated ConjMel tended to be younger while the NF1-mutated one tended to be older. The eight tumors arising from nevi were enriched in CTNNB1 mutations (63% vs. 8%; Fisher’s exact p-test = 0.001) compared to non-nevi ConjMel and five were devoid of BRAF, RAS, NF1, or KIT mutations, suggesting a specific oncogenic process in these tumors. The two KIT-mutated cases carried SF3B1 mutations and were located on sun-protected mucosa, a genotype shared with genital and anorectal mucosal melanomas. Targetable mutations were observed in ERBB2, IDH1, MET, and MAP2K1 (one occurrence each). Mutational landscape of ConjMel characterizes distinct molecular subtypes with oncogenic drivers common with mucosal and skin melanomas. CTNNB1 mutations were associated with nevus-derived ConjMel. Concomitant KIT/SF3B1 mutations in sun-protected cases suggest a common tumorigenic process with genital and anorectal mucosal melanomas

    Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma

    Full text link
    BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment

    Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

    Get PDF
    Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity

    Targeted long-read sequencing of the Ewing sarcoma 6p25.1 susceptibility locus identifies germline-somatic interactions with EWSR1-FLI1 binding

    Get PDF
    Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation

    Spatial–Spectral Analysis of Hyperspectral Images Reveals Early Detection of Downy Mildew on Grapevine Leaves

    No full text
    Downy mildew is a highly destructive disease of grapevine. Currently, monitoring for its symptoms is time-consuming and requires specialist staff. Therefore, an automated non-destructive method to detect the pathogen before the visible symptoms appear would be beneficial for early targeted treatments. The aim of this study was to detect the disease early in a controlled environment, and to monitor the disease severity evolution in time and space. We used a hyperspectral image database following the development from 0 to 9 days post inoculation (dpi) of three strains of Plasmopara viticola inoculated on grapevine leaves and developed an automatic detection tool based on a Support Vector Machine (SVM) classifier. The SVM obtained promising validation average accuracy scores of 0.96, a test accuracy score of 0.99, and it did not output false positives on the control leaves and detected downy mildew at 2 dpi, 2 days before the clear onset of visual symptoms at 4 dpi. Moreover, the disease area detected over time was higher than that when visually assessed, providing a better evaluation of disease severity. To our knowledge, this is the first study using hyperspectral imaging to automatically detect and show the spatial distribution of downy mildew on grapevine leaves early over time

    Limitation de l’usage des pesticides sur des cultures de laitue d’abri : bilan du projet DEPHY EXPE LILLA.

    No full text
    Le numĂ©ro 76 d'Innovations Agronomiques est constituĂ© d’articles de synthĂšse des projets DEPHY EXPE publiĂ©s Ă  l’occasion du Colloque National DEPHY EXPE, qui s’est dĂ©roulĂ© le 28 mai 2019 Ă  l'AssemblĂ©e Permanente des Chambres d'Agriculture (Paris)Preventive chemical control is still today the main mean of managing pests in winter lettuce under shelter. Alternative strategies have been explored in the LILLA project, either to provide needed experimental results on non-chemical plant protection techniques, or to test cropping systems based on integrated protection strategies that reduce the use of pesticides. Innovative pest management levers, including increased genetic resistance to basal rots, or the use of drip instead of sprinkler-irrigation. Considering a set of 23 comparative crop management trials, halving the number of fungicide treatments in combination with alternative techniques does not show a statistical increase in the risk of crop failure. The biological control strategies tested against aphids remain to be improved. The cost of implementing alternative techniques is significant but remains moderate in most cases. The most effective of these techniques could be more easily implemented by farmers if uncertainties about crop income were lower.La lutte chimique prĂ©ventive est encore aujourd’hui le principal moyen de lutte contre les bioagresseurs en culture de laitue d’hiver sous abri. Des stratĂ©gies alternatives ont Ă©tĂ© explorĂ©es dans le projet LILLA, visant soit Ă  fournir des rĂ©fĂ©rences expĂ©rimentales manquantes sur des techniques non chimiques de protection des plantes, soit Ă  tester des conduites de cultures basĂ©es sur des stratĂ©gies intĂ©grĂ©es de protection, limitant le recours aux pesticides. Des leviers innovants, comme une rĂ©sistance gĂ©nĂ©tique accrue aux agents de la pourriture du collet, ou la conduite de l’irrigation en goutte Ă  goutte au lieu de l’aspersion, ont pu ĂȘtre identifiĂ©s. En considĂ©rant un ensemble de 23 essais comparatifs de conduite des cultures, une diminution de moitiĂ© du nombre de traitements fongicides en association avec des techniques alternatives ne montre pas une augmentation statistique du risque de perte de rĂ©colte. Contre les pucerons, les stratĂ©gies de contrĂŽle biologique testĂ©es restent Ă  amĂ©liorer. Le coĂ»t de mise en oeuvre des techniques alternatives est significatif mais, pour la plupart d’entre elles, reste modĂ©rĂ©. Les plus efficaces de ces techniques pourraient plus facilement ĂȘtre mises en oeuvre dans les exploitations si les incertitudes sur les revenus de la rĂ©colte Ă©taient moins grandes
    • 

    corecore