20,254 research outputs found

    A Convex Model for Edge-Histogram Specification with Applications to Edge-preserving Smoothing

    Full text link
    The goal of edge-histogram specification is to find an image whose edge image has a histogram that matches a given edge-histogram as much as possible. Mignotte has proposed a non-convex model for the problem [M. Mignotte. An energy-based model for the image edge-histogram specification problem. IEEE Transactions on Image Processing, 21(1):379--386, 2012]. In his work, edge magnitudes of an input image are first modified by histogram specification to match the given edge-histogram. Then, a non-convex model is minimized to find an output image whose edge-histogram matches the modified edge-histogram. The non-convexity of the model hinders the computations and the inclusion of useful constraints such as the dynamic range constraint. In this paper, instead of considering edge magnitudes, we directly consider the image gradients and propose a convex model based on them. Furthermore, we include additional constraints in our model based on different applications. The convexity of our model allows us to compute the output image efficiently using either Alternating Direction Method of Multipliers or Fast Iterative Shrinkage-Thresholding Algorithm. We consider several applications in edge-preserving smoothing including image abstraction, edge extraction, details exaggeration, and documents scan-through removal. Numerical results are given to illustrate that our method successfully produces decent results efficiently

    The pre-shock gas of SN1006 from HST/ACS observations

    Full text link
    We derive the pre-shock density and scale length along the line of sight for the collisionless shock from a deep HST image that resolves the H alpha filament in SN1006 and updated model calculations. The very deep ACS high-resolution image of the Balmer line filament in the northwest (NW) quadrant shows that 0.25 < n_0 < le$ 0.4 cm-3 and that the scale along the line of sight is about 2 x 10^{18} cm, while bright features within the filament correspond to ripples with radii of curvature less than 1/10 that size. The derived densities are within the broad range of earlier density estimates, and they agree well with the ionization time scale derived from the Chandra X-ray spectrum of a region just behind the optical filament. This provides a test for widely used models of the X-ray emission from SNR shocks. The scale and amplitude of the ripples are consistent with expectations for a shock propagating though interstellar gas with ~ 20% density fluctuations on parsec scales as expected from studies of interstellar turbulence. One bulge in the filament corresponds to a knot of ejecta overtaking the blast wave, however. The interaction results from the rapid deceleration of the blast wave as it encounters an interstellar cloud.Comment: 16 pages, 6 figures, to appear in Ap

    Conduction electrons localized by charged magneto-acceptors A2^{2-} in GaAs/GaAlAs quantum wells

    Full text link
    A variational theory is presented of A1^{1-} and A2^{2-} centers, i.e. of a negative acceptor ion localizing one and two conduction electrons, respectively, in a GaAs/GaAlAs quantum well in the presence of a magnetic field parallel to the growth direction. A combined effect of the well and magnetic field confines conduction electrons to the proximity of the ion, resulting in discrete repulsive energies above the corresponding Landau levels. The theory is motivated by our experimental magneto-transport results which indicate that, in a heterostructure doped in the GaAs well with Be acceptors, one observes a boil-off effect in which the conduction electrons in the crossed-field configuration are pushed by the Hall electric field from the delocalized Landau states to the localized acceptor states and cease to conduct. A detailed analysis of the transport data shows that, at high magnetic fields, there are almost no conducting electrons left in the sample. It is concluded that one negative acceptor ion localizes up to four conduction electrons.Comment: 8 pages, 5 figure

    The clash of symmetries in a Randall-Sundrum-like spacetime

    Get PDF
    We present a toy model that exhibits clash-of-symmetries style Higgs field kink configurations in a Randall-Sundrum-like spacetime. The model has two complex scalar fields Phi_{1,2}, with a sextic potential obeying global U(1)xU(1) and discrete Phi_1 Phi_2 interchange symmetries. The scalar fields are coupled to 4+1 dimensional gravity endowed with a bulk cosmological constant. We show that the coupled Einstein-Higgs field equations have an interesting analytic solution provided the sextic potential adopts a particular form. The 4+1 metric is shown to be that of a smoothed-out Randall-Sundrum type of spacetime. The thin-brane Randall-Sundrum limit, whereby the Higgs field kinks become step functions, is carefully defined in terms of the fundamental parameters in the action. The ``clash of symmetries'' feature, defined in previous papers, is manifested here through the fact that both of the U(1) symmetries are spontaneously broken at all non-asymptotic points in the extra dimension ww. One of the U(1)'s is asymptotically restored as w --> -infinity, with the other U(1) restored as w --> +infinity. The spontaneously broken discrete symmetry ensures topological stability. In the gauged version of this model we find new flat-space solutions, but in the warped metric case we have been unable to find any solutions with nonzero gauge fields.Comment: 15 pages, 5 figures; minor changes including added references and an updated figure; to appear in Phys Rev

    Automatic estimation of flux distributions of astrophysical source populations

    Full text link
    In astrophysics a common goal is to infer the flux distribution of populations of scientifically interesting objects such as pulsars or supernovae. In practice, inference for the flux distribution is often conducted using the cumulative distribution of the number of sources detected at a given sensitivity. The resulting "log(N>S)\log(N>S)-log(S)\log (S)" relationship can be used to compare and evaluate theoretical models for source populations and their evolution. Under restrictive assumptions the relationship should be linear. In practice, however, when simple theoretical models fail, it is common for astrophysicists to use prespecified piecewise linear models. This paper proposes a methodology for estimating both the number and locations of "breakpoints" in astrophysical source populations that extends beyond existing work in this field. An important component of the proposed methodology is a new interwoven EM algorithm that computes parameter estimates. It is shown that in simple settings such estimates are asymptotically consistent despite the complex nature of the parameter space. Through simulation studies it is demonstrated that the proposed methodology is capable of accurately detecting structural breaks in a variety of parameter configurations. This paper concludes with an application of our methodology to the Chandra Deep Field North (CDFN) data set.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS750 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    How to Track Protists in Three Dimensions

    Get PDF
    We present an apparatus optimized for tracking swimming microorganisms in the size range 10-1000 microns, in three dimensions (3D), far from surfaces, and with negligible background convective fluid motion. CCD cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrowband dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure
    corecore