10,528 research outputs found

    Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system

    Get PDF
    We present a detailed theoretical analysis of a multi-level quantum system coupled to two radiation fields and subject to decoherence. We concentrate on an effect known from quantum optics as the Autler-Townes splitting, which has been recently demonstrated experimentally [M. A. Sillanpaa et al., Phys. Rev. Lett. 103, 193601 (2009)] in a superconducting phase qubit. In the three-level approximation, we derive analytical solutions and describe how they can be used to extract the decoherence rates and to account for the measurement data. Better agreement with the experiment can be obtained by extending this model to five levels. Finally, we investigate the stationary states created in the experiment and show that their structure is close to that of dark states.Comment: 16 pages, 8 figure

    Spin and Charge Structure Factor of the 2-d Hubbard Model

    Full text link
    The spin and charge structure factors are calculated for the Hubbard model on the square lattice near half-filling using a spin-rotation invariant six-slave boson representation. The charge structure factor shows a broad maximum at the zone corner and is found to decrease monotonically with increasing interaction strength and electron density and increasing temperature. The spin structure factor develops with increasing interaction two incommensurate peaks at the zone boundary and along the zone diagonal. Comparison with results of Quantum Monte Carlo and variational calculations is carried out and the agreement is found to be good. The limitations of an RPA-type approach are pointed out.Comment: 18 pages, revtex, 13 postscript figures, submitted to Phys. Rev.

    Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    Get PDF
    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities

    Imaging Asteroid 4 Vesta Using the Framing Camera

    Get PDF
    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface gravity and escape velocity are comparable to those of other asteroids and hence much smaller than those of the inner planets o

    Visible Color and Photometry of Bright Materials on Vesta

    Get PDF
    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of ~70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5]

    Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn

    Full text link
    NASA's Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types, a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), b) lobate patches with well-defined edges, and c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt

    Characterization of traverse slippage experienced by Spirit rover on Husband Hill at Gusev crater

    Get PDF
    Spirit rover experienced significant slips traversing Husband Hill. This paper analyzes the slippage Spirit experienced from Sol 154 to Sol 737. Slippage with respect to terrain type and slope is computed using data downlinked from the rover, rover position, and orientation estimations from visual odometry (VO) and photogrammetry based bundle adjustment (BA) method. Accumulated slippage reached a maximum of 83.86 m on Sol 648. However, as Spirit descended into the Inner Basin, the direction of slippage reversed, and accumulated slippage approached zero by the end of the entire traverse. Eight local regions with significant slips and nineteen traverse segments have been analyzed. Slippage was found to be highly correlated to slope direction and magnitude; the reverse of slope directions in the ascending and descending portions of the traverse proves to be the main contributor to the observed cancellation of slippage. While the horizontal component of the slippage almost canceled out, the difference in elevation continually accumulated, mainly during the ascent. In general, long traverse segments created more slips than short ones. This is reflected in both the accumulated and individual slippages. In considering the four major Mars terrain types, Spirit performed best on bedrock, managing to drive on slopes close to 30°. Fine-grain surfaces were the most challenging; though progress was made on slopes up to 15°, slippages of over 100% (more slippage than distance traveled) occurred for short segments. The results of this work can be incorporate into a traverse planning framework in which rover slippage is minimized. Results can be employed in landed planetary missions for precision navigation to avoid potentially dangerous regions by considering expected slippage

    Biophysical Phenotyping and Modulation of ALDH+ Inflammatory Breast Cancer Stem‐Like Cells

    Full text link
    Cancer stem‐like cells (CSCs) have been shown to initiate tumorigenesis and cancer metastasis in many cancer types. Although identification of CSCs through specific marker expression helps define the CSC compartment, it does not directly provide information on how or why this cancer cell subpopulation is more metastatic or tumorigenic. In this study, the functional and biophysical characteristics of aggressive and lethal inflammatory breast cancer (IBC) CSCs at the single‐cell level are comprehensively profiled using multiple microengineered tools. Distinct functional (cell migration, growth, adhesion, invasion and self‐renewal) and biophysical (cell deformability, adhesion strength and contractility) properties of ALDH+ SUM149 IBC CSCs are found as compared to their ALDH− non‐CSC counterpart, providing biophysical insights into why CSCs has an enhanced propensity to metastasize. It is further shown that the cellular biophysical phenotype can predict and determine IBC cells’ tumorigenic ability. SUM149 and SUM159 IBC cells selected and modulated through biophysical attributes—adhesion and stiffness—show characteristics of CSCs in vitro and enhance tumorigenicity in in vivo murine models of primary tumor growth. Overall, the multiparametric cellular biophysical phenotyping and modulation of IBC CSCs yields a new understanding of IBC’s metastatic properties and how they might develop and be targeted for therapeutic interventions.This study comprehensively profiles the biophysical characteristics of inflammatory breast cancer stem‐like cells to delineate the so‐called “biophysical phenotype” of the model of the most metastatic breast cancer subtype. Evidence indicates that the cellular biophysical phenotype can predict and determine cancer cells’ tumorigenic ability.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/1/smll201802891_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/2/smll201802891.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/3/smll201802891-sup-0001-S1.pd

    Investigating the Origin of Bright Materials on Vesta: Synthesis, Conclusions, and Implications

    Get PDF
    The Dawn spacecraft started orbiting the second largest asteroid (4) Vesta in August 2011, revealing the details of its surface at an unprecedented pixel scale as small as approx.70 m in Framing Camera (FC) clear and color filter images and approx.180 m in the Visible and Infrared Spectrometer (VIR) data in its first two science orbits, the Survey Orbit and the High Altitude Mapping Orbit (HAMO) [1]. The surface of Vesta displays the greatest diversity in terms of geology and mineralogy of all asteroids studied in detail [2, 3]. While the albedo of Vesta of approx.0.38 in the visible wavelengths [4, 5] is one of the highest among all asteroids, the surface of Vesta shows the largest variation of albedos found on a single asteroid, with geometric albedos ranging at least from approx.0.10 to approx.0.67 in HAMO images [5]. There are many distinctively bright and dark areas observed on Vesta, associated with various geological features and showing remarkably different forms. Here we report our initial attempt to understand the origin of the areas that are distinctively brighter than their surroundings. The dark materials on Vesta clearly are different in origin from bright materials and are reported in a companion paper [6]
    • 

    corecore