28 research outputs found

    Vaccinia Virus Proteins A52 and B14 Share a Bcl-2–Like Fold but Have Evolved to Inhibit NF-κB rather than Apoptosis

    Get PDF
    Vaccinia virus (VACV), the prototype poxvirus, encodes numerous proteins that modulate the host response to infection. Two such proteins, B14 and A52, act inside infected cells to inhibit activation of NF-κB, thereby blocking the production of pro-inflammatory cytokines. We have solved the crystal structures of A52 and B14 at 1.9 Å and 2.7 Å resolution, respectively. Strikingly, both these proteins adopt a Bcl-2–like fold despite sharing no significant sequence similarity with other viral or cellular Bcl-2–like proteins. Unlike cellular and viral Bcl-2–like proteins described previously, A52 and B14 lack a surface groove for binding BH3 peptides from pro-apoptotic Bcl-2–like proteins and they do not modulate apoptosis. Structure-based phylogenetic analysis of 32 cellular and viral Bcl-2–like protein structures reveals that A52 and B14 are more closely related to each other and to VACV N1 and myxoma virus M11 than they are to other viral or cellular Bcl-2–like proteins. This suggests that a progenitor poxvirus acquired a gene encoding a Bcl-2–like protein and, over the course of evolution, gene duplication events have allowed the virus to exploit this Bcl-2 scaffold for interfering with distinct host signalling pathways

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Strongyloides Hyperinfection and Hypogammaglobulinemia

    No full text
    We report strongyloides hyperinfection in two patients with generalized hypogammaglobulinemia from multiple myeloma and nephrotic syndrome, despite a significant strongyloides-specific immunoglobulin G (IgG) response. In contrast to reports on animals, where human IgG was shown to be a protective antibody, our observation suggests that in humans, immunity to the infective-stage larvae is not protective against the autoinfective larvae, which are the causative agents of strongyloides hyperinfection

    Functionalized silicon dioxide self-referenced plasmonic chip as point-of-care biosensor for stroke biomarkers NT-proBNP and S100β

    No full text
    Surface plasmon resonance (SPR) biosensors are often used in the detection of solid, liquid or gaseous samples in diagnostics, pharmaceutics and military defense. Plasmon waveguide resonance (PWR) mode is obtained when a dielectric waveguide layer is added to the metal film. In this study, a self-referenced PWR (SRPWR) silicon dioxide (SiO₂) chip was examined. The self-referenced measurement is important to compensate for temperature fluctuations, other instabilities and allows RI signal measurement without an additional reference sample, thus minimising the sample volume needed. The chip was fabricated with a multi-layer of metals and dielectrics, consisting of a 420 nm SiO₂ layer, a 40 nm Ag layer and another 480 nm SiO₂ layer. This chip was shown to give one internal plasmon excited on the bottom interface SiO₂/Ag, which is used as self-reference in the detection. The top layer acts as a waveguide layer and can be designed to give modes with ultrahigh penetration depth. A direct assay was developed, where the recognition molecule (specific antibody) was immobilized onto the SiO₂ plasmonic chip surface, via a covalent coupling protocol based on 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde. The SRPWR biosensor was developed for the sensing of two chosen stroke biomarkers: NT-proBNP and S100β, which are sensitive and specific for stroke diagnostics. For both biomarkers, a linear decreasing pattern in the RI signal was recognized with the increasing biomarkers concentrations. Biomarkers detection was conducted in deionized water and validation was done in spiked porcine plasma. The SiO₂ based plasmonic chip demonstrates a limit-of-detection of less than 1 ng/mL that is clinically relevant for both stroke biomarkers

    B-Type Natriuretic Peptide as a Significant Brain Biomarker for Stroke Triaging Using a Bedside Point-of-Care Monitoring Biosensor

    No full text
    Stroke is a widespread condition that causes 7 million deaths globally. Survivors suffer from a range of disabilities that affect their everyday life. It is a complex condition and there is a need to monitor the different signals that are associated with it. Stroke patients need to be rapidly diagnosed in the emergency department in order to allow the admission of the time-limited treatment of tissue plasminogen activator (tPA). Stroke diagnostics show the use of sophisticated technologies; however, they still contain limitations. The hidden information and technological advancements behind the utilization of biomarkers for stroke triaging are significant. Stroke biomarkers can revolutionize the way stroke patients are diagnosed, monitored, and how they recover. Different biomarkers indicate different cascades and exhibit unique expression patterns which are connected to certain pathologies in the human body. Over the past decades, B-type natriuretic peptide (BNP) and its derivative N-terminal fragment (NT-proBNP) have been increasingly investigated and highlighted as significant cardiovascular biomarkers. This work reviews the recent studies that have reported on the usefulness of BNP and NT-proBNP for stroke triaging. Their classification association is also presented, with increased mortality in stroke, correlation with cardioembolic stroke, and an indication of a second stroke recurrence. Moreover, recent scientific efforts conducted for the technological advancement of a bedside point-of-care (POC) device for BNP and NT-proBNP measurements are discussed. The conclusions presented in this review may hopefully assist in the major efforts that are currently being conducted in order to improve the care of stroke patients

    Blood-based biomarkers are associated with different ischemic stroke mechanisms and enable rapid classification between cardioembolic and atherosclerosis etiologies

    No full text
    Stroke is a top leading cause of death, which occurs due to interference in the blood flow of the brain. Ischemic stroke (blockage) accounts for most cases (87%) and is further subtyped into cardioembolic, atherosclerosis, lacunar, other causes, and cryptogenic strokes. The main value of subtyping ischemic stroke patients is for a better therapeutic decision-making process. The current classification methods are complex and time-consuming (hours to days). Specific blood-based biomarker measurements have promising potential to improve ischemic stroke mechanism classification. Over the past decades, the hypothesis that different blood-based biomarkers are associated with different ischemic stroke mechanisms is increasingly investigated. This review presents the recent studies that investigated blood-based biomarker characteristics differentiation between ischemic stroke mechanisms. Different blood-based biomarkers are specifically discussed (b-type natriuretic peptide, d-dimer, c-reactive protein, tumor necrosis factor-α, interleukin-6, interleukin-1β, neutrophil-lymphocyte ratio, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein and apolipoprotein A), as well as the different cut-off values that may be useful in specific classifications for cardioembolic and atherosclerosis etiologies. Lastly, the structure of a point-of-care biosensor device is presented, as a measuring tool on-site. The information presented in this review will hopefully contribute to the major efforts to improve the care for stroke patients.National Research Foundation (NRF)Published versionThis research was funded by the National Research Foundation (NRF) of Singapore under the Campus for Research Excellence and Technological Enterprise (CREATE) and the Singapore International Graduate Award (SINGA) for supporting D.H
    corecore