3,376 research outputs found

    Usefulness of heart measures in flight simulation

    Get PDF
    The results of three studies performed at the NASA Langley Research Center are presented to indicate the areas in which heart measures are useful for detecting differences in the workload state of subjects. Tasks that involve the arousal of the sympathetic nervous system, such as landing approaches, were excellent candidates for the use of average heart-rate and/or the increase in heart-rate during a task. The latter of these two measures was the better parameter because it removed the effects of diurnal variations in heart-rate and some of the intersubject variability. Tasks which differ in the amount of mental resources required are excellent candidates for heart-rate variability measures. Heart-rate variability measures based upon power spectral density techniques were responsive to the changing task demands of landing approach tasks, approach guidance options, and 2 versus 20 second interstimulus-intervals of a monitoring task. Heart-rate variability measures were especially sensitive to time-on-task when the task was characterized by minimal novelty, complexity, and uncertainty (i.e., heart-rate variability increases as a function of the subjects boredom)

    Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels

    Get PDF
    BACKGROUND: SCF ubiquitin ligases target numerous proteins for ubiquitin dependent proteolysis, including p27 and cyclin E. SCF and other cullin-RING ligases (CRLs) are regulated by the ubiquitin-like protein Nedd8 that covalently modifies the cullin subunit. The removal of Nedd8 is catalyzed by the Jab1/MPN domain metalloenzyme (JAMM) motif within the Csn5 subunit of the Cop9 Signalosome. RESULTS: Here, we conditionally knock down Csn5 expression in HEK293 human cells using a doxycycline-inducible shRNA system. Cullin levels were not altered in CSN-deficient human cells, but the levels of multiple F-box proteins were decreased. Molecular analysis indicates that this decrease was due to increased Cul1- and proteasome-dependent turnover. Diminished F-box levels resulted in reduced SCF activity, as evidenced by accumulation of two substrates of the F-box protein Fbw7, cyclin E and c-myc, in Csn5-depleted cells. CONCLUSION: We propose that deneddylation of Cul1 is required to sustain optimal activity of SCF ubiquitin ligases by repressing 'autoubiquitination' of F-box proteins within SCF complexes, thereby rescuing them from premature degradation

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors

    Get PDF
    Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model

    z~2: An Epoch of Disk Assembly

    Full text link
    We explore the evolution of the internal gas kinematics of star-forming galaxies from the peak of cosmic star-formation at z2z\sim2 to today. Measurements of galaxy rotation velocity VrotV_{rot}, which quantify ordered motions, and gas velocity dispersion σg\sigma_g, which quantify disordered motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a continuous baseline in redshift from z=2.5z=2.5 to z=0.1z=0.1, spanning 10 Gyrs. At low redshift, nearly all sufficiently massive star-forming galaxies are rotationally supported (Vrot>σgV_{rot}>\sigma_g). By z=2z=2, the percentage of galaxies with rotational support has declined to 50%\% at low stellar mass (1091010M10^{9}-10^{10}\,M_{\odot}) and 70%\% at high stellar mass (10101011M10^{10}-10^{11}M_{\odot}). For Vrot>3σgV_{rot}\,>\,3\,\sigma_g, the percentage drops below 35%\% for all masses. From z=2z\,=\,2 to now, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is mostly due to an average decline in σg\sigma_g by a factor of 3 since a redshift of 2, which is independent of mass. Over the same time period, VrotV_{rot} increases by a factor of 1.5 for low mass systems, but does not evolve for high mass systems. These trends in VrotV_{rot} and σg\sigma_g with time are at a fixed stellar mass and should not be interpreted as evolutionary tracks for galaxy populations. When galaxy populations are linked in time with abundance matching, not only does σg\sigma_g decline with time as before, but VrotV_{rot} strongly increases with time for all galaxy masses. This enhances the evolution in Vrot/σgV_{rot}/\sigma_g. These results indicate that z=2z\,=\,2 is a period of disk assembly, during which the strong rotational support present in today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap

    Brainstem Auditory Evoked Potentials' Diagnostic Accuracy for Hearing Loss: Systematic Review and Meta-Analysis

    Get PDF
    Background: Microvascular decompression (MVD) utilizes brainstem auditory evoked potential (BAEP) intraoperative monitoring to reduce the risk of iatrogenic hearing loss. Studies report varying efficacy and hearing loss rates during MVD with intraoperative monitoring. Objectives: This study aims to perform a comprehensive review and study of diagnostic accuracy of BAEPs during MVD to predict hearing loss in studies published from January 1984 to December 2013. Methods: The PubMed/MEDLINE and World Science databases were searched. Studies performed MVD for trigeminal neuralgia, hemifacial spasm, glossopharyngeal neuralgia or geniculate neuralgia and monitored intraoperative BAEPs to prevent hearing loss. Retrospectively, BAEP parameters were compared with postoperative hearing. The diagnostic accuracy of significant change in BAEPs, which includes loss of response, was tested using summary receiver operative curve and diagnostic odds ratio (DOR). Results: A total of 13 studies were included in the analysis with a total of 2,540 cases. Loss of response pooled sensitivity, specificity, and DOR with 95% confidence interval being 74% (60–84%), 98% (88–100%), and 69.3 (18.2–263%), respectively. The similar significant change results were 88% (77–94%), 63% (40–81%), and 9.1 (3.9–21.6%). Conclusion: Patients with hearing loss after MVD are more likely to have shown loss of BAEP responses intraoperatively. Loss of responses has high specificity in evaluating hearing loss. Patients undergoing MVD should have BAEP monitoring to prevent hearing loss

    Attenuated Expression of DFFB is a Hallmark of Oligodendrogliomas with 1p-Allelic Loss

    Get PDF
    Allelic loss of chromosome 1p is frequently observed in oligodendroglioma. We screened 177 oligodendroglial tumors for 1p deletions and found 6 tumors with localized 1p36 deletions. Several apoptosis regulation genes have been mapped to this region, including Tumor Protein 73 (p73), DNA Fragmentation Factor subunits alpha (DFFA) and beta (DFFB), and Tumor Necrosis Factor Receptor Superfamily Members 9 and 25 (TNFRSF9, TNFRSF25). We compared expression levels of these 5 genes in pairs of 1p-loss and 1p-intact tumors using quantitative reverse-transcriptase PCR (QRTPCR) to test if 1p deletions had an effect on expression. Only the DFFB gene demonstrated decreased expression in all tumor pairs tested. Mutational analysis did not reveal DFFB mutations in 12 tested samples. However, it is possible that DFFB haploinsufficiency from 1p allelic loss is a contributing factor in oligodendroglioma development

    Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1

    Get PDF
    COP9 signalosome (CSN) cleaves the ubiquitin-like protein Nedd8 from the Cul1 subunit of SCF ubiquitin ligases. The Jab1/MPN domain metalloenzyme (JAMM) motif in the Jab1/Csn5 subunit was found to underlie CSN's Nedd8 isopeptidase activity. JAMM is found in proteins from archaea, bacteria, and eukaryotes, including the Rpn11 subunit of the 26S proteasome. Metal chelators and point mutations within JAMM abolished CSN-dependent cleavage of Nedd8 from Cul1, yet had little effect on CSN complex assembly. Optimal SCF activity in yeast and both viability and proper photoreceptor cell (R cell) development in Drosophila melanogaster required an intact Csn5 JAMM domain. We propose that JAMM isopeptidases play important roles in a variety of physiological pathways
    corecore