181 research outputs found

    Emission color tuning and white-light generation based on photochromic control of energy transfer reactions in polymer micelles

    Get PDF
    We encapsulate a fluorescent donor molecule and a photochromic acceptor unit (photoswitch) in polymer micelles and show that the color of the emitted fluorescence is continuously changed from blue to yellow upon light-induced isomerization of the acceptor. Interestingly, white-light generation is achieved in between. With the photoswitch in the colorless form, intense blue emission from the donor is observed, while UV-induced isomerization to the colored form induces an energy transfer reaction that quenches the donor emission and sensitizes the yellow emission from the colored photoswitch. The process is reversed by exposure to visible light, triggering isomerization to the colorless form

    An all-photonic full color RGB system based on molecular photoswitches

    Get PDF
    On-command changes in the emission color of functional materials is a sought-after property in many contexts. Of particular interest are systems using light as the external trigger to induce the color changes. Here we report on a tri-component cocktail consisting of a fluorescent donor molecule and two photochromic acceptor molecules encapsulated in polymer micelles and we show that the color of the emitted fluorescence can be continuously changed from blue-to-green and from blue-to-red upon selective light-induced isomerization of the photochromic acceptors to the fluorescent forms. Interestingly, isomerization of both acceptors to different degrees allows for the generation of all emission colors within the red-green-blue (RGB) color system. The function relies on orthogonally controlled FRET reactions between the blue emitting donor and the green and red emitting acceptors, respectively

    Computational insights on the isomerization of photochromic oxazines

    No full text
    We investigated the isomerization of the simplest member of a family of photochromic oxazines with the aid of density functional theory, using three different functionals. Specifically, we simulated the thermal interconversion of the two enantiomers, associated with this compound, and established that the opening of the oxazine ring dictates the rate of the overall degenerate process. The M062X functional provides the best match to experimental data, whereas B3LYP calculations fail to model accurately the ground-state potential-energy surface of this system. In addition, we also modeled the absorption spectra of this compound and its photogenerated isomer with time-dependent calculations. The resulting data support the original assignment of the experimental spectra and confirm that the oxazine ring opens upon excitation. The MPW1PW91 functional provides the best match to experimental data, whereas M062X calculations fail to model accurately the spectroscopic parameters of this particular system. Furthermore, the MPW1PW91 calculations demonstrate that the photoinduced opening of the oxazine ring occurs along the potential-energy surface of the first triplet excited state. Indeed, the photoinduced isomerization appears to involve: (1) the initial excitation of one isomer to the second singlet excited state, (2) its thermal relaxation to the first triplet excited state, (3) its ring opening to produce the other isomer, and (4) the thermal relaxation of the product to the ground state. Thus, our calculations provide valuable information on the elementary steps governing the isomerization of this particular photochromic compound in the ground state and upon excitation. These useful mechanistic insights can guide the design of novel members of this family of photoresponsive compounds with specific properties

    Photoactivatable Synthetic Dyes for Fluorescence Imaging at the Nanoscale

    No full text
    The transition from conventional to photoactivatable fluorophores can bring the resolution of fluorescence images from the micrometer to the nanometer level. Indeed, fluorescence photoactivation can overcome the limitations that diffraction imposes on the resolution of optical microscopes. Specifically, distinct fluorophores positioned within the same subdiffraction volume can be resolved only if their emissions are activated independently at different intervals of time. Under these conditions, the sequential localization of multiple probes permits the reconstruction of images with a spatial resolution that is otherwise impossible to achieve with conventional fluorophores. The irreversible photolysis of protecting groups or the reversible transformations of photochromic compounds can be employed to control the emission of appropriate fluorescent chromophores and allow the implementation of these ingenious operating principles for superresolution imaging. Such molecular constructs enable the spatiotemporal control that is required to avoid diffraction and can become invaluable analytical tools for the optical visualization of biological specimens and nanostructured materials with unprecedented resolution
    corecore