77 research outputs found

    Podoplanin: An Emerging Cancer Biomarker and Therapeutic Target

    Get PDF
    Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma

    Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps

    Get PDF
    Thrombosis is a frequent, life-threatening complication of systemic infection, associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days post-infection persisting after the infection resolves, and is monocytic cell-dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared to the liver, being evident by 24 h and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provide a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo

    Lymphatic blood filling in CLEC-2-deficient mouse models

    Get PDF
    C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin

    The podoplanin-CLEC-2 axis inhibits inflammation in sepsis

    Get PDF
    Sepsis is a life-threatening condition where exaggerated inflammatory responses lead to severe tissue damage. Here, Rayes and colleagues show that the interaction between podoplanin and its receptor CLEC-2 on platelets plays a critical role in limiting inflammation during sepsis

    Megakaryocyte NLRP3 hyperactivation induces mild anemia and potentiates inflammatory response in mice

    Get PDF
    BackgroundThe NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been described in both immune cells and platelets, but its role in the megakaryocyte (MK) lineage remains elusive.ObjectiveThe aim of this study was to explore the role of NLRP3 inflammasome in megakaryocytes and platelets.MethodsWe generated Nlrp3A350V/+/Gp1ba-CreKI/+ mice carrying a mutation genetically similar to the one observed in human Muckle–Wells syndrome, which leads to hyperactivity of NLRP3 specifically in MK and platelets.ResultsPlatelets from the mutant mice expressed elevated levels of both precursor and active form of caspase-1, suggesting hyperactivity of NLRP3 inflammasome. Nlrp3A350V/+/Gp1ba-CreKI/+ mice developed normally and had normal platelet counts. Expression of major platelet receptors, platelet aggregation, platelet deposition on collagen under shear, and deep vein thrombosis were unchanged. Nlrp3A350V/+/Gp1ba-CreKI/+ mice had mild anemia, reduced Ter119+ cells in the bone marrow, and splenomegaly. A mild increase in MK TGF-β1 might be involved in the anemic phenotype. Intraperitoneal injection of zymosan in Nlrp3A350V/+/Gp1ba-CreKI/+ mice induced increased neutrophil egression and elevated levels of a set of proinflammatory cytokines, alongside IL-10 and G-CSF, in the peritoneal fluid as compared with control animals.ConclusionMK/platelet NLRP3 inflammasome promotes the acute inflammatory response and its hyperactivation in mice leads to mild anemia and increased extramedullary erythropoiesis

    Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse

    Get PDF
    There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS. </jats:p
    • …
    corecore