117 research outputs found

    Radon behavior investigation based on cluster analysis and atmospheric modelling

    Get PDF
    Radon measurements were performed in Huelva, a city located near a phosphogypsum repository in the SW of the Iberian Peninsula, between March 2015 and March 2016. The mean values of this gas oscillate between 5.6 and 10.9 Bq m-3 and maximum ranges between 36.4 and 53.4 Bq m-3. Radon shows the expected monthly variation with higher levels in November and December. Typical daily evolutions were also observed, with maximum between 06:00 and 08:00 UTC (Coordinated Universal Time) and minimum around noon. To extract daily radon patterns, the cluster technique of K-means was applied. Based on this classification, four different case study periods were analyzed in detail, describing two events with high radon levels and two with low radon. Local meteorology, back-trajectories computed with the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model and meteorological fields from the WRF (Weather Research and Forecasting) model, were used to analyze the four case study periods selected. Low radon periods are characterized by the occurrence of non-pure breezes and maritime air masses from the Atlantic Ocean, whereas high radon periods occur under pure sea-land breezes affected by Mediterranean air masses. Factors such as meteorology or local emission sources alone may not be enough to explain the high radon events in the area. Other factors could be playing a major role in the radon levels. The obtained results indicate the contribution of radon transported from medium-long range, suggesting that, under specific weather conditions, the Gulf of Cadiz could act as a radon trap and the continental areas around the Western Mediterranean Basin could act as a radon source.Postprint (author's final draft

    Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

    Full text link
    The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's sensitivity improves with the gamma-ray energy. Above \sim1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form ϕ(E)=ϕ0(E/E0)αβln(E/E0)\phi(E) = \phi_0 (E/E_{0})^{-\alpha -\beta\cdot{\rm{ln}}(E/E_{0})}. The data is well-fit with values of α=2.63±0.03\alpha=2.63\pm0.03, β=0.15±0.03\beta=0.15\pm0.03, and log10(ϕ0 cm2 s TeV)=12.60±0.02_{10}(\phi_0~{\rm{cm}^2}~{\rm{s}}~{\rm{TeV}})=-12.60\pm0.02 when E0E_{0} is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±\pm50\% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa

    Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    Full text link
    We present results from daily monitoring of gamma rays in the energy range 0.5\sim0.5 to 100\sim100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of >95>95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to 6\sim6 hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index Γ=2.21±0.14stat±0.20sys\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}} and an exponential cut-off E0=5.4±1.1stat±1.0sysE_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}} TeV. For Mrk 501, we find an index Γ=1.60±0.30stat±0.20sys\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}} and exponential cut-off E0=5.7±1.6stat±1.0sysE_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

    Full text link
    We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC's ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape (dNdE=ϕ0(E/7 TeV)αβln(E/7 TeV))\left(\frac{dN}{dE} = \phi_0 \left(E/\textrm{7 TeV}\right)^{-\alpha-\beta\ln\left(E/\textrm{7 TeV}\right)}\right) with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are ϕo\phi_o=(2.35±\pm0.040.21+0.20^{+0.20}_{-0.21})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.79±\pm0.020.03+0.01^{+0.01}_{-0.03}, and β\beta=0.10±\pm0.010.03+0.01^{+0.01}_{-0.03}. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are ϕo\phi_o=(2.31±\pm0.020.17+0.32^{+0.32}_{-0.17})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.73±\pm0.020.02+0.03^{+0.03}_{-0.02}, and β\beta=0.06±\pm0.01±\pm0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap

    Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    Full text link
    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.Comment: 16 pages (including supplementary material), 5 figure

    Very high energy particle acceleration powered by the jets of the microquasar SS 433

    Full text link
    SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of 0.26c\sim0.26c extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is 1040\sim10^{40} erg s1^{-1}. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of γ\gamma rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV γ\gamma-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of 16\sim16~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zho
    corecore