33,618 research outputs found

    A semiclassical theory of quantum noise in open chaotic systems

    Get PDF
    We consider the quantum evolution of classically chaotic systems in contact with surroundings. Based on \hbar-scaling of an equation for time evolution of the Wigner's quasi-probability distribution function in presence of dissipation and thermal diffusion we derive a semiclassical equation for quantum fluctuations. This identifies an early regime of evolution dominated by fluctuations in the curvature of the potential due to classical chaos and dissipation. A stochastic treatment of this classical fluctuations leads us to a Fokker-Planck equation which is reminiscent of Kramers' equation for thermally activated processes. This reveals an interplay of three aspects of evolution of quantum noise in weakly dissipative open systems; the reversible Liouville flow, the irreversible chaotic diffusion which is characteristic of the system itself, and irreversible dissipation induced by the external reservoir. It has been demonstrated that in the dissipation-free case a competition between Liouville flow in the contracting direction of phase space and chaotic diffusion sets a critical width in the Wigner function for quantum fluctuations. We also show how the initial quantum noise gets amplified by classical chaos and ultimately equilibrated under the influence of dissipation. We establish that there exists a critical limit to the expansion of phase space. The limit is determined by chaotic diffusion and dissipation. Making use of appropriate quantum-classical correspondence we verify the semiclassical analysis by the fully quantum simulation in a chaotic quartic oscillator.Comment: Plain Latex, 27 pages, 6 ps figure, To appear in Physica

    Use of microgravity to improve the efficiency and power output of Nd-doped laser glasses

    Get PDF
    The objectives of this research are to: (1) obtain further evidence and understand the science for the reported improvement in chemical homogeneity in glasses prepared in microgravity; and (2) study the feasibility of improving the optical and fluorescence properties, particularly, the limit for Nd(+3) concentration quenching and threshold energy for laser action for laser glasses prepared in microgravity. Attention was directed to ground based investigation whose primary purpose was to determine the suitability and conditions for processing these laser glasses in space. This report describes that the scientific and technical information required for planning flight experiments for these glasses have been obtained, and the preparation for handling and analyzing post flight samples have also been taken. Instruments required for measuring the fluorescence properties of interest have been constructed. The optical and fluorescence properties for the glasses have been measured and made available for comparative property analysis

    Emergency egress requirements for Space Station Freedom

    Get PDF
    There is a real concern regarding the requirements for safe emergency egress from the Space Station Freedom (SSF). The possible causes of emergency are depressurization due to breach of the station hull by space debris, meteoroids, seal failure, or vent failure; chemical toxicity; and a large fire. The objectives of the current study are to identify the tasks required to be performed in emergencies, establish the time required to perform these tasks, and to review the human equipment interface in emergencies. It was found that a fixed time value specified for egress has shifted focus from the basic requirements of safe egress, that in some situations the crew members may not be able to complete the emergency egress tasks in three minutes without sacrificing more than half of the station, and that increased focus should be given to human factors aspects of space station design
    corecore