21,541 research outputs found

    Radial deformation of the earth by oceanic tidal loading

    Get PDF
    A high-degree spherical harmonic series is used to compute the radial deformation of the Earth by oceanic tidal loading. By exploiting fast numerical transforms, this approach is found to be much more efficient, but no less accurate, than the traditional Green's function approach. The method is used to derive an atlas of load tide maps for 10 constitutents of the NSWC ocean tide model

    A semiclassical theory of quantum noise in open chaotic systems

    Get PDF
    We consider the quantum evolution of classically chaotic systems in contact with surroundings. Based on \hbar-scaling of an equation for time evolution of the Wigner's quasi-probability distribution function in presence of dissipation and thermal diffusion we derive a semiclassical equation for quantum fluctuations. This identifies an early regime of evolution dominated by fluctuations in the curvature of the potential due to classical chaos and dissipation. A stochastic treatment of this classical fluctuations leads us to a Fokker-Planck equation which is reminiscent of Kramers' equation for thermally activated processes. This reveals an interplay of three aspects of evolution of quantum noise in weakly dissipative open systems; the reversible Liouville flow, the irreversible chaotic diffusion which is characteristic of the system itself, and irreversible dissipation induced by the external reservoir. It has been demonstrated that in the dissipation-free case a competition between Liouville flow in the contracting direction of phase space and chaotic diffusion sets a critical width in the Wigner function for quantum fluctuations. We also show how the initial quantum noise gets amplified by classical chaos and ultimately equilibrated under the influence of dissipation. We establish that there exists a critical limit to the expansion of phase space. The limit is determined by chaotic diffusion and dissipation. Making use of appropriate quantum-classical correspondence we verify the semiclassical analysis by the fully quantum simulation in a chaotic quartic oscillator.Comment: Plain Latex, 27 pages, 6 ps figure, To appear in Physica

    Spacelab baseline ECS trace contaminant removal test program

    Get PDF
    An estimate of the Spacelab Baseline Environmental Control System's contaminated removal capability was required to allow determination of the need for a supplemental trace contaminant removal system. Results from a test program to determine this removal capability are presented

    Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?

    Get PDF
    Using a rather complete description of the in-medium ρ\rho spectral function - being constrained by various independent experimental information - we calculate pertinent dilepton production rates from hot and dense hadronic matter. The strong broadening of the ρ\rho resonance entails a reminiscence to perturbative qqˉq\bar q annihilation rates in the vicinity of the phase boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions - incorporating recent information on the hadro-chemical composition at CERN-SpS energies - essentially supports the broadening scenario. Possible implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure

    Tests of Ocean-Tide Models by Analysis of Satellite-To-Satellite Range Measurements: An Update

    Get PDF
    Seven years of GRACE intersatellite range-rate measurements are used to test the new ocean tide model FES2014 and to compare against similar results obtained with earlier models. These qualitative assessments show that FES2014 represents a marked improvement in accuracy over its earlier incarnation, FES2012, with especially notable improvements in the Arctic Ocean for constituents K(sub 1) and S(sub 2). Degradation appears to have occurred in two anomalous regions: the Ross Sea for the O(sub 1) constituent and the Weddell Sea for M(sub 2)

    Thermodynamics of the PNJL model with nonzero baryon and isospin chemical potentials

    Full text link
    We have extended the Polyakov-Nambu-Jona-Lasinio (PNJL) model for two degenerate flavours to include the isospin chemical potential (μI\mu_I). All the diagonal and mixed derivatives of pressure with respect to the quark number (proportional to baryon number) chemical potential (μ0\mu_0) and isospin chemical potential upto sixth order have been extracted at μ0=μI=0\mu_0 = \mu_I = 0. These derivatives give the generalized susceptibilities with respect to quark and isospin numbers. Similar estimates for the flavour diagonal and off-diagonal susceptibilities are also presented. Comparison to Lattice QCD (LQCD) data of some of these susceptibilities for which LQCD data are available, show similar temperature dependence, though there are some quantitative deviations above the crossover temperature. We have also looked at the effects of instanton induced flavour-mixing coming from the UA(1)U_A(1) chiral symmetry breaking 't Hooft determinant like term in the NJL part of the model. The diagonal quark number and isospin susceptibilities are completely unaffected. The off-diagonal susceptibilities show significant dependence near the crossover. Finally we present the chemical potential dependence of specific heat and speed of sound within the limits of chemical potentials where neither diquarks nor pions can condense.Comment: 15 pages, 7 figures, Added discussions and references, version to appear in Phys. Rev.

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi
    corecore