292 research outputs found

    Adult Rat Bones Maintain Distinct Regionalized Expression of Markers Associated with Their Development

    Get PDF
    The incidence of limb bone fracture and subsequent morbidity and mortality due to excessive bone loss is increasing in the progressively ageing populations of both men and women. In contrast to bone loss in the weight-bearing limb, bone mass in the protective skull vault is maintained. One explanation for this could be anatomically diverse bone matrix characteristics generated by heterogeneous osteoblast populations. We have tested the hypothesis that adult bones demonstrate site-specific characteristics, and report differences at the organ, cell and transcriptome levels. Limb bones contain greater amounts of polysulphated glycosaminoglycan stained with Alcian Blue and have significantly higher osteocyte densities than skull bone. Site-specific patterns persist in cultured adult bone-derived cells both phenotypically (proliferation rate, response to estrogen and cell volumes), and at the level of specific gene expression (collagen triple helix repeat containing 1, reelin and ras-like and estrogen-regulated growth inhibitor). Based on genome-wide mRNA expression and cluster analysis, we demonstrate that bones and cultured adult bone-derived cells segregate according to site of derivation. We also find the differential expression of genes associated with embryological development (Skull: Zic, Dlx, Irx, Twist1 and Cart1; Limb: Hox, Shox2, and Tbx genes) in both adult bones and isolated adult bone-derived cells. Together, these site-specific differences support the view that, analogous to different muscle types (cardiac, smooth and skeletal), skull and limb bones represent separate classes of bone. We assign these differences, not to mode of primary ossification, but to the embryological cell lineage; the basis and implications of this division are discussed

    Temperature dependence of the anomalous effective action of fermions in two and four dimensions

    Get PDF
    The temperature dependence of the anomalous sector of the effective action of fermions coupled to external gauge and pseudo-scalar fields is computed at leading order in an expansion in the number of Lorentz indices in two and four dimensions. The calculation preserves chiral symmetry and confirms that a temperature dependence is compatible with axial anomaly saturation. The result checks soft-pions theorems at zero temperature as well as recent results in the literature for the pionic decay amplitude into static photons in the chirally symmetric phase. The case of chiral fermions is also considered.Comment: RevTex, 19 pages, no figures. References adde

    Equilibrium properties of self-interacting neutrinos in the quasi-particle approach

    Get PDF
    In this work a neutrino gas in equilibrium is studied both at T=0 and at finite temperature. Neutrinos are treated as massive Dirac quasi-particles with two generations. We include self-interactions among the neutrinos via neutral currents, as well as the interaction with a background of matter. To obtain the equilibrium properties we use Wigner function techniques. To account for corrections beyond the Hartree approximation, we also introduce correlation functions. We prove that, under the quasi-particle approximation, these correlation functions can be expressed as products of Wigner functions. We analyze the main properties of the neutrino eigenmodes in the medium, such as effective masses and mixing angle. We show that the formulae describing these quantities will differ with respect to the case with no self-interactions.Comment: 17 pages, no figure

    Lung cancer in never smokers (LCINS): development of a UK national research strategy

    Get PDF
    Introduction Lung cancer in never smokers (LCINS) accounts for 15% of lung cancers diagnosed in the UK, making it the 8th most common cancer. There are few robust studies specific to the LCINS population making data surrounding the incidence and mortality of LCINS incomplete, leaving many gaps in our understanding of the needs of this population. Methods To address a lack of research in this important area, the UK National Cancer Research Institute Lung Study Group (NCRI-LSG) undertook a national survey and hosted a research strategy day to define key research priorities. A wide cross section of stakeholders, including patient advocates, the charitable sector, basic and translational researchers, and multi-disciplinary healthcare professionals contributed highlighting their research priorities. Results One-hundred twenty-seven surveys were completed (52 by patients/patient advocates) prior to the strategy day. These identified themes for expert review presentations and subsequent workshop discussions at the national research strategy day, which registered 190 attendees (50 patients/patient advocates). The four key themes that emerged to form the basis of a research strategy for LCINS are (1) Raising awareness, (2) Risk assessment and early detection, (3) Disease biology, (4) Living with and beyond. Conclusion This paper summarises current evidence and important gaps in our knowledge related to LCINS. We present recommendations for a national research strategy aimed at improving outcomes for patients

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV

    Highly conserved interaction profiles between clinically relevant mutants of the cytomegalovirus CDK-like kinase pUL97 and human cyclins: functional significance of cyclin H

    Get PDF
    The complex host interaction network of human cytomegalovirus (HCMV) involves the regulatory protein kinase pUL97, which represents a viral cyclin-dependent kinase (CDK) ortholog. pUL97 interacts with the three human cyclin types T1, H, and B1, whereby the binding region of cyclin T1 and the pUL97 oligomerization region were both assigned to amino acids 231-280. We further addressed the question of whether HCMVs harboring mutations in ORF-UL97, i.e., short deletions or resistance-conferring point mutations, are affected in the interaction with human cyclins and viral replication. To this end, clinically relevant UL97 drug-resistance-conferring mutants were analyzed by whole-genome sequencing and used for genetic marker transfer experiments. The recombinant HCMVs indicated conservation of pUL97-cyclin interaction, since all viral UL97 point mutants continued to interact with the analyzed cyclin types and exerted wild-type-like replication fitness. In comparison, recombinant HCMVs UL97 Δ231-280 and also the smaller deletion Δ236-275, but not Δ241-270, lost interaction with cyclins T1 and H, showed impaired replication efficiency, and also exhibited reduced kinase activity. Moreover, a cellular knock-out of cyclins B1 or T1 did not alter HCMV replication phenotypes or pUL97 kinase activity, possibly indicating alternative, compensatory pUL97-cyclin interactions. In contrast, however, cyclin H knock-out, similar to virus deletion mutants in the pUL97-cyclin H binding region, exhibited strong defective phenotypes of HCMV replication, as supported by reduced pUL97 kinase activity in a cyclin H-dependent coexpression setting. Thus, cyclin H proved to be a very relevant determinant of pUL97 kinase activity and viral replication efficiency. As a conclusion, the results provide evidence for the functional importance of pUL97-cyclin interaction. High selective pressure on the formation of pUL97-cyclin complexes was identified by the use of clinically relevant mutants

    Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading.

    Get PDF
    International audienceBone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood, suggesting an influence of growth rate on later bone quality. We have compared the effects of fast and slow growth on bone strength and architecture in the tibiotarsi of embryonic and juvenile birds. The loading-related biochemical responses (intracellular G6PD activity and NO release) to mechanical load were also determined. Further, we have analysed the proliferation and differentiation characteristics of primary tibiotarsal osteoblasts from fast and slow-growing strains. We found that bones from chicks with divergent growth rates display equal resistance to applied loads, but weight-correction revealed that the bones from juvenile fast growth birds are weaker, with reduced stiffness and lower resistance to fracture. Primary osteoblasts from slow-growing juvenile birds proliferated more rapidly and had lower alkaline phosphatase activity. Bones from fast-growing embryonic chicks display rapid radial expansion and incomplete osteonal infilling but, importantly, lack mechanical responsiveness. These findings are further evidence that the ability to respond to mechanical inputs is crucial to adapt skeletal architecture to generate a functionally appropriate bone structure and that fast embryonic and juvenile growth rates may predispose bone to particular architectures with increased fragility in the adult. (C) 2009 Elsevier Inc. All rights reserved

    SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants.

    Full text link
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design

    Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability.

    Full text link
    Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies

    Motivation of UK school pupils towards foreign languages: a large-scale survey at Key Stage 3

    Get PDF
    Motivation is one of the most significant predictors of success in foreign language learning. While individual and governmental commitment to the learning of foreign languages is growing throughout most of Europe and across the globe, it is stuttering in the United Kingdom. An entitlement to language learning in primary school is not yet fully in place, whilst the removal of language from the core curriculum at Key Stage 4 (ages 14 to 16) has led to a dramatic fall in numbers of language learners. Among national initiatives seeking to enhance learners’ interest in languages among school pupils are Specialist Language Colleges and the Languages Ladder. The latter, by certifying achievement through its associated accreditation scheme Asset Languages, seeks to engender a sense of success and motivate continuation of language study. This article reports on a study conducted in 2005-06 of the language learning motivation of over ten thousand school pupils at Key Stage 3 – the only group currently obliged to study a foreign language. The study analyses the nature of learner motivation and its relationship with gender, level of study (Years 7, 8 and 9) and type of school, and thus provides evidence for possible measures to increase numbers of teenagers studying a foreign language, and a baseline against which the success of policy initiatives can be measured in the future
    • 

    corecore