1,208 research outputs found

    PARTICLE-WATER INTERACTIONS OF HYDROPHOBIC ORGANIC MICROPOLLUTANTS IN MARINE SYSTEMS

    Get PDF
    An understanding of the reactivity of hydrophobic organic micropollutants (HOMs) is of paramount importance to water quality managers because of their toxicity, persistence, and liability to bioaccumulate. In this study, the role played by the main estuarine variables (organic matter, suspended particulate matter [SPM], particle type and salinity) on HOM behaviour was investigated by employing samples from estuaries with different geochemical signatures (Chupa, Russia, and the Dart, Plym, Beaulieu and Carnon, U K ) . A laboratory-based technique was developed for the determination of the solubility and sorptive behaviour of HOMs using 14C-labelled, beta-emitting organic compounds (2,2\5,5'-tetrachlorobiphenyl (2,2ā€™5,5'-TCB), bis(2-ethylhexyl)phthalate ester (DEHP), and benzo[a]pyrene (BaP)) coupled with liquid scintillation counting. The results indicate that relative solubility is mainly dependent upon the type of dissolved organic carbon (DOC) present, not its concentration, and is reduced with increasing salinity. The uptake of 2,2ā€™5,5'-TCB and BaP by particles is time dependent with a system response time (the time required to achieve 63% of the new equilibrium) of about 0.37 hours for 2,2',5,5ā€™-TCB and 0.02 hours for BaP. The adsorption, expressed as particle-water partition coefficients, KDS, is to a varying extent dependent on DOC, salinity and particle characteristics (iron/manganese hydroxides, particulate carbon and specific surface area). Adsorption is best defined by a linear isotherm and is enhanced in sea water compared with river water owing to a reduction in charge on particle surfaces at high ionic strengths. This effect has been quantified using an adsorption salting constant, Gp, whose values are typically in the range 0.4-2 L mol-2 The inverse relationship between KD and SPM concentration, an effect well documented in the literature, has been defined by a simple power law (KD = a SPM-b where a and b are site and compound-specific constants). Typical values for a and b are approximately 4x10^ and 0.6 for 2,2',5,5'- TCB, 50x105 and 1.0 for DEHP, and 2x105 and 0.5 for BaP, respectively. Empirical parameterisation of these effects are extremely useful for encoding into numerical transport and distribution models, and their application is demonstrated in this thesis by calculating the retention of HOMs by estuaries.BMT Marine Information Systems Limited Southampto

    Industrial legislation in Australia in 2018

    Full text link
    Ā© 2019, Australian Labour and Employment Relations Association (ALERA), SAGE Publications Ltd, Los Angeles, London, New Delhi, Singapore and Washington DC. It has been a quiet year like last year for the passing of federal industrial legislation (due to a number of factors, including the political turmoil of the federal coalition government and their lack of an overall labour law reform agenda). This article examines key federal industrial legislative developments including the Modern Slavery Act 2018 (Cth). The article identifies that the federal Act contains much weaker compliance measures than the counterpart New South Wales legislation also passed in 2018 ā€“ the Modern Slavery Act 2018 (NSW). Also, although the Coalition government has attempted to continue to prosecute its case for further union governance measures, this agenda has been less successful than in previous years, with key government Bills not yet passed by the Parliament. The stagnation in the federal Parliament continues to motivate certain State Parliaments to address worker exploitation, and the article goes on to examine key State industrial legislation passed in 2018 including the Victorian labour hire licensing statute. In light of the continuing dominant position of the federal Labor opposition in opinion polls and an impending federal election in 2019, the article concludes by briefly considering the federal Labor opposition's agenda for industrial legislation

    The O(3P) and N(4S) density measurement at 225 km by ultraviolet absorption and fluorescence in the Apollo-Soyuz test project

    Get PDF
    The densities of O(3P) and N(4S) at 225 km were determined during the Apollo Soyuz Test Project by a resonance absorption/fluorescence technique in which OI and NI line radiation produced and collimated on board the Apollo was reflected from the Soyuz back to the Apollo for spectral analysis. The two spacecraft maneuvered so that a range of observation angles of plus or minus 15 deg with respect to the normal to the orbital velocity vector was scanned. The measurements were made at night on two consecutive orbits at spacecraft separations of 150 and 500 m. The resulting relative counting rates as function of observation angle were compared to calculated values to determine the oxygen value. This value agrees with mass spectrometric measurements made under similar conditions. The nitrogen value is in good agreement with other measurements and suggests a smaller diurnal variation than is predicted by present models

    Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs

    Full text link
    Ā© 2015 Elsevier Inc. All rights reserved. Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of Ļ‰-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of Ļ‰-3 PUFAs impair particular tumorigenic pathways. For example, the Ļ‰-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer

    Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver

    Full text link
    Ā© 2017 Elsevier B.V. The tyrosine kinase inhibitors sorafenib and imatinib are important in the treatment of a range of cancers but adverse effects in some patients necessitate dosage modifications. CYP3A4 has a major role in the oxidation of sorafenib to its N-oxide and N-hydroxymethyl metabolites and also acts in concert with CYP2C8 to mediate imatinib N-demethylation. CYP3A4 expression and function are impaired in patients with advanced liver disease, whereas the functions of CYP2C enzymes are relatively preserved. We evaluated the biotransformation of sorafenib and imatinib in well-characterized microsomal fractions from 17 control subjects and 19 individuals with hepatic cirrhosis of varying severity. The principal findings were that liver disease impaired the microsomal oxidation of sorafenib to its major metabolites to 40ā€“44% of control (P < 0.01), whereas the N-demethylation of imatinib was relatively unimpaired. The impairments in sorafenib biotransformation were correlated with decreased serum albumin concentrations and increased serum bilirubin concentrations in patients with liver disease, but not with the overall grade of liver disease according to the Child-Pugh system. In contrast, there was no relationship between imatinib N-demethylation and clinicopathologic factors in liver disease patients. These findings were accounted for in terms of the differential roles of CYPs 3A4 and 2C8 in the intrinsic clearance of the drugs. CYP3A4 has the major role in the intrinsic clearance of sorafenib but plays a secondary role to CYP2C8 in the intrinsic clearance of imatinib. In agreement with these findings CYP2C protein expression and CYP2C8-mediated paclitaxel 6Ī±-hydroxylation were unimpaired in cirrhotic livers. This information could be adapted in individualized approaches such as in vivo CYP3A4 phenotyping to optimize sorafenib safety and efficacy in cancer patients with liver dysfunction

    Cell-derived microparticles: New targets in the therapeutic management of disease

    Full text link
    Intercellular communication is essential to maintain vital physiological activities and to regulate the organism's phenotype. There are a number of ways in which cells communicate with one another. This can occur via autocrine signaling, endocrine signaling or by the transfer of molecular mediators across gap junctions. More recently communication via microvesicular shedding has gained important recognition as a significant pathway by which cells can coordinate the spread and dominance of selective traits within a population. Through this communication apparatus, cells can now acquire and secure a survival advantage, particularly in the context of malignant disease. This review aims to highlight some of the functions and implications of microparticles in physiology of various disease states, and present a novel therapeutic strategy through the regulation of microparticle production

    Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish (Danio rerio)

    Get PDF
    With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the Ī±-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in Ī±-mannan and Ī²-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds

    Arene oxidation with malonoyl peroxides

    Get PDF
    Malonoyl peroxide 7, prepared in a single step from the commercially available diacid, is an effective reagent for the oxidation of aromatics. Reaction of an arene with peroxide 7 at room temperature leads to the corresponding protected phenol which can be unmasked by aminolysis. An ionic mechanism consistent with the experimental findings and supported by isotopic labeling, Hammett analysis, EPR investigations and reactivity profile studies is proposed

    Changing times in England: the influence on geography teachersā€™ professional practice

    Get PDF
    School geography in England has been characterised as a pendulum swinging between policies that emphasise curriculum and pedagogy alternately. In this paper, I illustrate the influence of these shifts on geography teacher's professional practice, by drawing on three ā€œmomentsā€ from my experience as a student, teacher and teacher educator. Barnett's description of teacher professionalism as a continuous project of ā€œbeingā€ illuminates how geography teachers can adapt to competing influences. It reflects teacher professionalism as an unfinished project, which is responsive, but not beholden, to shifting trends, and is informed by how teachers frame and enact policies. I argue that recognising these contextual factors is key to supporting geography teachers in ā€œbeingā€ geography education professionals. As education becomes increasingly competitive on a global scale, individual governments are looking internationally for ā€œsolutionsā€ to improve educational rankings. In this climate, the future of geography education will rest on how teachers react locally to international trends. Geography teacher educators can support this process by continuing to inform the field through meaningful geography education research, in particular in making the contextual factors of their research explicit. This can be supported through continued successful international collaboration in geography education research
    • ā€¦
    corecore