94 research outputs found

    Mutation Order in Acute Myeloid Leukemia Identifies Uncommon Patterns of Evolution and Illuminates Phenotypic Heterogeneity

    Get PDF
    Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes

    Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells

    Get PDF
    β-Thalassemia pathology is due not only to loss of β-globin (HBB), but also to erythrotoxic accumulation and aggregation of the β-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in β-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize β-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing β-thalassemia

    Regulatory Mechanisms for Receptor Protein Tyrosine Phosphatases

    No full text

    Surprise! HSC Are Aberrant in Chronic Lymphocytic Leukemia

    Get PDF
    In this issue of Cancer Cell, Kikushige et al. report the surprising finding that, in human chronic lymphocytic leukemia (CLL), hematopoietic stem cells (HSC) aberrantly generate clonal B cells with CLL-like phenotypes, which implicate HSC in the pathogenesis of this mature lymphoid malignancy and has major implications for CLL therapies

    Reply to Fišer et al.: Myeloid reprogramming of Ph +

    No full text
    • …
    corecore