252 research outputs found

    Interaction of water vapour at 298 K with Al-MCM-41 materials synthesised at room temperature

    Get PDF
    Abstract The interaction of water vapour with Al-MCM-41, prepared by direct synthesis at ambient temperature and pressure, using tetraethoxysilane, aluminium sulfate, hexadecyltrimethylammonium bromide and ammonia, and its effect on the pore structure were studied in order to investigate the stability towards prolonged exposure to water vapour and the influence of the aluminium content. With this purpose two consecutive water adsorption isotherms were determined at 298 K on samples with Si/Al ratio between 15 and 100. The samples were characterised by X-ray diffraction and adsorption of nitrogen at 77 K and toluene at 298 K, prior to and after exposure to water vapour. Pore size distributions were calculated from nitrogen, toluene and water adsorption isotherms using, respectively, the NLDFT method, a recently developed hybrid MC-DBdB method and the DBdB macroscopic approximation. It was found that Al-MCM-41 samples are significantly stable and that the stability improves as the amount of aluminium increases. Upon prolonged exposure to water vapour, there is a small decrease in pore size (3-5%), pore volume (8-16%) and total surface area (3-7%). The structural changes are essentially a consequence of the surface hydroxylation that occurred and not a result of a partial collapse of the pore structure. Although the presence of some extraframework Al can contribute to the improvement of the stability by protecting the surface, it was concluded that tetracoordinated Al plays an important role. The stabilizing effect of the Al incorporated in the walls can result from a higher degree of condensation on the surface of the pore walls and from the mild acidity generated

    Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium

    Full text link
    We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental measure density functional theory is employed, where the matrix particles are quenched and the colloids and polymers are annealed, i.e. allowed to equilibrate. We study capillary condensation of the mixture in a tiny sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of matrices are considered: (i) colloid-sized matrix particles at low packing fractions and (ii) large matrix particles at high packing fractions. These two cases show fundamentally different behavior and should both be experimentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be experimentally accessible. We find that in case (ii), even at high packing fractions, the main effect of the matrix is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without matrix via a simple rescaling.Comment: 12 pages, 9 figures, submitted to PR

    Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    Get PDF
    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed

    Use of boundary driven non-equilibrium molecular dynamics for determining transport diffusivities of multicomponent mixtures in nanoporous materials

    No full text
    The boundary-driven molecular modeling strategy to evaluate mass transport coefficients of fluids in nanoconfined media is revisited and expanded to multicomponent mixtures. The method requires setting up a simulation with bulk fluid reservoirs upstream and downstream of a porous media. A fluid flow is induced by applying an external force at the periodic boundary between the upstream and downstream reservoirs. The relationship between the resulting flow and the density gradient of the adsorbed fluid at the entrance/exit of the porous media provides for a direct path for the calculation of the transport diffusivities. It is shown how the transport diffusivities found this way relate to the collective, Onsager, and self-diffusion coefficients, typically used in other contexts to describe fluid transport in porous media. Examples are provided by calculating the diffusion coefficients of a Lennard-Jones (LJ) fluid and mixtures of differently sized LJ particles in slit pores, a realistic model of methane in carbon-based slit pores, and binary mixtures of methane with hypothetical counterparts having different attractions to the solid. The method is seen to be robust and particularly suited for the study of study of transport of dense fluids and liquids in nanoconfined media

    Modeling nitrogen adsorption in spherical pores of siliceous materials by density functional theory

    No full text
    Adsorption of nitrogen in spherical pores of FDU-1 silica at 77 K is considered by means of a nonlocal density functional theory (NLDFT) accounting for a disordered structure of pore walls. Pore size distribution analysis of various FDU-1 samples subject to different temperatures of calcination revealed three distinct groups of pores. The principal group of pores is identified as ordered spherical mesopores connected with each other by smaller interconnecting pores and irregular micropores present in the mesopore walls. To account for the entrances (connecting pores) into spherical mesopores, a concept of solid mass distribution with respect to the apparent density was introduced. It is shown that the introduction of the aforementioned distribution was sufficient to quantitatively describe experimental adsorption isotherms over the entire range of relative pressures spanning six decades
    corecore