40 research outputs found

    Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel microand mesoporous silicas

    Get PDF
    We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/ mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with wormlike cylindrical channels of mode diameter of ∼95 Å, KLE silica with cagelike spheroidal pores of ca. 140 Å, KLE/IL silica with spheroidal pores of ∼140 Å connected by cylindrical channels of ∼26 Å, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of ∼70 Å. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro-and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques

    Ultrasonic Study of Water Adsorbed in Nanoporous Glasses

    Get PDF
    Thermodynamic properties of fluids confined in nanopores differ from those observed in the bulk. To investigate the effect of nanoconfinement on water compressibility, we performed water sorption experiments on two nanoporous glass samples while concomitantly measuring the speed of longitudinal and shear ultrasonic waves in these samples. These measurements yield the longitudinal and shear moduli of the water laden nanoporous glass as a function of relative humidity that we utilized in the Gassmann theory to infer the bulk modulus of the confined water. This analysis shows that the bulk modulus (inverse of compressibility) of confined water is noticeably higher than that of the bulk water at the same temperature. Moreover, the modulus exhibits a linear dependence on the Laplace pressure. The results for water, which is a polar fluid, agree with previous experimental and numerical data reported for non-polar fluids. This similarity suggests that irrespective of intermolecular forces, confined fluids are stiffer than bulk fluids. Accounting for fluid stiffening in nanopores may be important for accurate interpretation of wave propagation measurements in fluid-filled nanoporous media, including in petrophysics, catalysis, and other applications, such as in porous materials characterization

    New insights into the breathing phenomenon in ZIF-4

    Get PDF
    Structural changes in ZIFs upon adsorption remain a paradigm due to the sensitivity of the adsorption mechanism to the nature of the organic ligands and gas probe molecules. Synchrotron X-ray diffraction under operando conditions clearly demonstrates for the first time that ZIF-4 exhibits a structural reorientation from a narrow-pore (np) to a new expanded-pore (ep) structure upon N2 adsorption, while it does not do so for CO2 adsorption. The existence of an expanded-pore structure of ZIF-4 has also been predicted by molecular simulations. In simulations the expanded structure was stabilized by entropy at high temperatures and by strong adsorption of N2 at low temperatures. These results are in perfect agreement with manometric adsorption measurements for N2 at 77 K that show the threshold pressure for breathing at ∼30 kPa. Inelastic neutron scattering (INS) measurements show that CO2 is also able to promote structural changes but, in this specific case, only at cryogenic temperatures (5 K).The authors would like to acknowledge financial support from the MINECO (MAT2016-80285-p), Generalitat Valenciana (PROMETEOII/2014/004), H2020 (MSCA-RISE-2016/NanoMed Project), Spanish ALBA synchrotron (Projects AV-2017021985 and IH-2018012591) and Oak Ridge beam time availability (Project IPTS-20843.1). JSA and JGL acknowledge financial support from UA (ACIE17-15) to cover all the expenses for INS measurements at Oak Ridge. JGL acknowledges GV (GRISOLIAP/2016/089) for the research contract

    Density Functional Theory Model of Adsorption Deformation

    No full text
    corecore